Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Anal Chem ; 91(23): 14951-14959, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31691565

RESUMO

Here, we provide the first experimental evidence of proton release from polyaniline (PANI) films subjected to anodic potentials at environmental pHs. We conducted an extensive characterization of unpolarized/polarized PANI films-synthesized by traditional sequential voltammetric scanning-by using spectroelectrochemistry, synchrotron radiation-X-ray photoelectron spectroscopy, near edge X-ray absorption fine structure, and potentiometric pH sensing in the vicinity of the PANI layer. This new insight enables the utilization of PANI as a proton pump, which is actively tuned through an electrochemical pulse, so as to controllably acidify well-confined thin layer samples. Furthermore, we demonstrate the analytical significance of this system by measuring the alkalinity of artificial and natural water samples by using two faced planar PANI electrodes, one working as a proton source and the other one as pH electrode. Finally, the impact of this approach is 2-fold: (i) all-solid-state electrode materials may be used with devisible consequences in miniaturized and implementable submersible probes, and (ii) rapid determination of alkalinity as compared to traditional approaches together with a versatility in pH adjustment in any kind of sample, among other applications.

2.
Angew Chem Int Ed Engl ; 58(52): 19027-19033, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31617301

RESUMO

Water-splitting photoanodes based on semiconductor materials typically require a dopant in the structure and co-catalysts on the surface to overcome the problems of charge recombination and high catalytic barrier. Unlike these conventional strategies, a simple treatment is reported that involves soaking a sample of pristine BiVO4 in a borate buffer solution. This modifies the catalytic local environment of BiVO4 by the introduction of a borate moiety at the molecular level. The self-anchored borate plays the role of a passivator in reducing the surface charge recombination as well as that of a ligand in modifying the catalytic site to facilitate faster water oxidation. The modified BiVO4 photoanode, without typical doping or catalyst modification, achieved a photocurrent density of 3.5 mA cm-2 at 1.23 V and a cathodically shifted onset potential of 250 mV. This work provides an extremely simple method to improve the intrinsic photoelectrochemical performance of BiVO4 photoanodes.

3.
Anal Chem ; 89(6): 3508-3516, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28194968

RESUMO

To understand the rate determining processes during the equilibration of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate-based (PEDOT(PSS)-based) solid contact (SC) ion-selective electrodes (ISEs), the surfaces of Pt, Au, and GC electrodes were coated with 0.1, 1.0, 2.0, and 4.0 µm thick galvanostatically deposited PEDOT(PSS) films. Next, potential vs time transients were recorded with these electrodes, with and without an additional potassium ion-selective membrane (ISM) coating, following their first contact with 0.1 M KCl solutions. The transients were significantly different when the multilayered sensor structures were assembled on Au or GC compared to Pt. The differences in the rate of equilibration were interpreted as a consequence of differences in the hydrophilicity of PEDOT(PSS) in contact with the substrate electrode surfaces based on X-ray photoelectron spectroscopy (XPS) and synchrotron radiation-XPS (SR-XPS) analysis of 10-100 nm thick PEDOT(PSS) films. The influence of the layer thickness of the electrochemically deposited PEDOT(PSS)-films on the hydrophilicity of these films has been documented by contact angle measurements over PEDOT(PSS)-coated Au, GC, and Pt electrode surfaces. This study demonstrates that it is possible to minimize the equilibration (conditioning) time of SC ISEs with aqueous solutions before usage by optimizing the thickness of the SC layer with a controlled ISM thickness. PEDOT(PSS)-coated Au and GC electrodes exhibit a significant negative potential drift during their equilibration in an aqueous solution. By coating the PEDOT(PSS) surface with an ISM, the negative potential drift is compensated by a positive potential drift related to the hydration of the ISM and activity changes at the PEDOT(PSS)|ISM interface. The potential drifts related to activity changes in the ISM have been determined by a novel adaptation of the "sandwich membrane" method.

4.
Anal Chem ; 88(13): 6939-46, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27266678

RESUMO

We report on the limiting conditions for ion-transfer voltammetry between an ion-exchanger doped and plasticized poly(vinyl chloride) (PVC) membrane and an electrolyte solution that was triggered via the oxidation of a poly(3-octylthiophene) (POT) solid-contact (SC), which was unexpectedly related to the thickness of the POT SC. An electropolymerized 60 nm thick film of POT coated with a plasticized PVC membrane exhibited a significant sodium transfer voltammetric signal whereas a thicker film (180 nm) did not display a measurable level of ion transfer due to a lack of oxidation of thick POT beneath the membrane film. In contrast, this peculiar phenomenon was not observed when the POT film was in direct contact with an organic solvent-based electrolyte. This evidence is indicative of three key points: (i) the coated membrane imposes a degree of rigidity to the system, which restricts the swelling of the POT film and its concomitant p-doping; (ii) this phenomenon is exacerbated with thicker POT films due to an initial morphology (rougher comprising a network of large POT nanoparticles), which gives rise to a diminished surface area and electrochemical reactivity in the POT SC; (iii) the rate of sodium transfer is higher with a thin POT film due to a smoother surface morphology made up of a network of smaller POT nanoparticles with an increased surface area and electrochemical reactivity. A variety of techniques including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry, scanning electron microscopy (SEM), atomic force microscopy (AFM), and synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS) were used to elucidate the mechanism of the POT thickness/POT surface roughness dependency on the electrochemical reactivity of the PVC/POT SC system.

5.
Langmuir ; 31(38): 10599-609, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26327251

RESUMO

The transportation and accumulation of redox active species at the buried interface between glassy carbon electrodes and plasticized polymeric membranes have been studied using synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), in situ electrochemical Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy, cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). Ferrocene tagged poly(vinyl chloride) [FcPVC], ferrocene (Fc), and its derivatives together with tetracyanoquinodimethane (TCNQ) doped plasticized polymeric membrane electrodes have been investigated, so as to extend the study of the mechanism of this reaction chemistry to different time scales (both small and large molecules with variable diffusion coefficients) using a range of complementary electrochemical and surface analysis techniques. This study also provides direct spectroscopic evidence for the transportation and electrochemical reactivity of redox active species, regardless of the size of the electrochemically reactive molecule, at the buried interface of the substrate electrode. With all redox dopants, when CA electrolysis was performed, redox active species were undetectable (<1 wt % of signature elements or below the detection limit of SR-XPS and NEXAFS) in the outermost surface layers of the membrane, while a high concentration of redox species was located at the electrode substrate as a consequence of the deposition of the reaction product (Fc(+)-anion complex) at the buried interface between the electrode and the membrane. This reaction chemistry for redox active species within plasticized polymeric membranes may be useful in the fashioning of multilayered polymeric devices (e.g., chemical sensors, organic electronic devices, protective laminates, etc.) based on an electrochemical tunable deposition of redox molecules at the buried substrate electrode beneath the membrane.


Assuntos
Carbono/química , Plastificantes/química , Polímeros/química , Eletrodos , Oxirredução , Propriedades de Superfície
6.
Anal Chem ; 85(21): 10495-502, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24080025

RESUMO

The ion-to-electron transduction reaction mechanism at the buried interface of the electrosynthesized poly(3-octylthiophene) (POT) solid-contact (SC) ion-selective electrode (ISE) polymeric membrane has been studied using synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS), near edge X-ray absorption fine structure (NEXAFS), and electrochemical impedance spectroscopy (EIS)/neutron reflectometry (NR). The tetrakis[3,5-bis(triflouromethyl)phenyl]borate (TFPB(-)) membrane dopant in the polymer ISE was transferred from the polymeric membrane to the outer surface layer of the SC on oxidation of POT but did not migrate further into the oxidized POT SC. The TFPB(-) and oxidized POT species could only be detected at the outer surface layer (≤14 Ǻ) of the SC material, even after oxidation of the electropolymerized POT SC for an hour at high anodic potential demonstrating that the ion-to-electron transduction reaction is a surface confined process. Accordingly, this study provides the first direct structural evidence of ion-to-electron transduction in the electropolymerized POT SC ISE by proving TFPB(-) transport from the polymeric ISE membrane to the oxidized POT SC at the buried interface of the SC ISE. It is inferred that the performance of the POT SC ISE is independent of the thickness of the POT SC but is instead contingent on the POT SC surface reactivity and/or electrical capacitance of the POT SC. In particular, the results suggest that the electropolymerized POT conducting polymer may spontaneously form a mixed surface/bulk oxidation state, which may explain the unusually high potential stability of the resulting ISE. It is anticipated that this new understanding of ion-to-electron transduction with electropolymerized POT SC ISEs will enable the development of new and improved devices with enhanced analytical performance attributes.


Assuntos
Elétrons , Eletrodos Seletivos de Íons , Polímeros/química , Tiofenos/química , Propriedades de Superfície
7.
Analyst ; 138(15): 4266-9, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23714844

RESUMO

Cyclic voltammetry (CV), synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS) and near edge X-ray absorption fine structure (NEXAFS) show that oxidation of ferrocene tagged PVC induces an accumulation of high molecular weight polymer at the buried interface between the substrate electrode and the plasticized membrane.


Assuntos
Compostos Ferrosos/metabolismo , Plastificantes/química , Cloreto de Polivinila/metabolismo , Transporte Biológico/fisiologia , Eletrodos , Compostos Ferrosos/análise , Metalocenos , Espectroscopia Fotoeletrônica/métodos , Cloreto de Polivinila/análise
8.
Phys Chem Chem Phys ; 15(5): 1364-8, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23247387

RESUMO

Resistivities of thin polymer films increase abruptly with decreasing thickness, although the corresponding decline in resistance plateaus below a certain thickness. One can jump to the incorrect conclusion that quantum confinement and surface scattering are responsible for this behaviour, and we highlight the pitfalls of committing such an error.


Assuntos
Polímeros/química , Transporte de Elétrons , Polimetil Metacrilato/química , Teoria Quântica , Propriedades de Superfície
9.
JACS Au ; 3(2): 592-602, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873698

RESUMO

Enhancing charge-carrier dynamics is imperative to achieve efficient photoelectrodes for practical photoelectrochemical devices. However, a convincing explanation and answer for the important question which has thus far been absent relates to the precise mechanism of charge-carrier generation by solar light in photoelectrodes. Herein, to exclude the interference of complex multi-components and nanostructuring, we fabricate bulky TiO2 photoanodes through physical vapor deposition. Integrating photoelectrochemical measurements and in situ characterizations, the photoinduced holes and electrons are transiently stored and promptly transported around the oxygen-bridge bonds and 5-coordinated Ti atoms to form polarons on the boundaries of TiO2 grains, respectively. Most importantly, we also find that compressive stress-induced internal magnetic field can drastically enhance the charge-carrier dynamics for the TiO2 photoanode, including directional separation and transport of charge carriers and an increase of surface polarons. As a result, bulky TiO2 photoanode with high compressive stress displays a high charge-separation efficiency and an excellent charge-injection efficiency, leading to 2 orders of magnitude higher photocurrent than that produced by a classic TiO2 photoanode. This work not only provides a fundamental understanding of the charge-carrier dynamics of the photoelectrodes but also provides a new paradigm for designing efficient photoelectrodes and controlling the dynamics of charge carriers.

10.
Adv Mater ; 35(21): e2211894, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905214

RESUMO

As a widely used commodity chemical, ammonia is critical for producing nitrogen-containing fertilizers and serving as the promising zero-carbon energy carrier. Photoelectrochemical nitrogen reduction reaction (PEC NRR) can provide a solar-powered green and sustainable route for synthesis of ammonia (NH3 ). Herein, an optimum PEC system is reported with an Si-based hierarchically-structured PdCu/TiO2 /Si photocathode and well-thought-out trifluoroethanol as the proton source for lithium-mediated PEC NRR, achieving a record high NH3 yield of 43.09 µg cm-2 h-1 and an excellent faradaic efficiency of 46.15% under 0.12 MPa O2 and 3.88 MPa N2 at 0.07 V versus lithium(0/+) redox couple (vs Li0/+ ). PEC measurements coupled with operando characterization reveal that the PdCu/TiO2 /Si photocathode under N2 pressures facilitate the reduction of N2 to form lithium nitride (Li3 N), which reacts with active protons to produce NH3 while releasing the Li+ to reinitiate the cycle of the PEC NRR. The Li-mediated PEC NRR process is further enhanced by introducing small amount of O2 or CO2 under pressure by accelerating the decomposition of Li3 N. For the first time, this work provides mechanistic understanding of the lithium-mediated PEC NRR process and opens new avenues for efficient solar-powered green conversion of N2 -to-NH3 .

11.
Anal Chem ; 84(14): 6158-65, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22703479

RESUMO

Seawater analysis is one of the most challenging in the field of environmental monitoring, mainly due to disparate concentration levels between the analyte and the salt matrix causing interferences in a variety of analytical techniques. We propose here a miniature electrochemical sample pretreatment system for a rapid removal of NaCl utilizing the coaxial arrangement of an electrode and a tubular Nafion membrane. Upon electrolysis, chloride is deposited at the Ag electrode as AgCl and the sodium counterions are transported across the membrane. This cell was found to work efficiently at potentials higher than 400 mV in both stationary and flow injection mode. Substantial residual currents observed during electrolysis were found to be a result of NaCl back diffusion from the outer side of the membrane due to insufficient permselectivity of the Nafion membrane. It was demonstrated that the residual current can be significantly reduced by adjusting the concentration of the outer solution. On the basis of ion chromatography results, it was found that the designed cell used in flow injection electrolysis mode reduced the NaCl concentration from 0.6 M to 3 mM. This attempt is very important in view of nutrient analysis in seawater where NaCl is a major interfering agent. We demonstrate that the pretreatment of artificial seawater samples does not reduce the content of nitrite or nitrate ions upon electrolysis. A simple diffusion/extraction steady state model is proposed for the optimization of the electrolysis cell characteristics.

12.
Analyst ; 136(16): 3252-8, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21735000

RESUMO

Solid-contact (SC) ion-selective electrodes (ISEs) utilizing thin films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and plasticized poly(vinylchloride) (PVC) have been produced using a spin casting procedure. This study was carried out with a view of characterizing this popular and well known SC ISE using a series of complementary surface analysis techniques. This work revealed that PEDOT:PSS prevents the separation of an undesirable water layer at the buried interface of this SC ISE due to the high miscibility of water in the hydrophilic PEDOT:PSS layer. The lack of a clearly defined and molecularly sharp buried interface prohibits the formation of a distinct water layer presumably by eliminating sites that promote the accumulation of water. This outcome is important to the chemical sensor community since it provides further insights into the compatibility of sensor components in SC ISEs.

13.
Phys Chem Chem Phys ; 13(10): 4400-10, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21249246

RESUMO

Both Keggin-type phosphotungstic acid (HPW) and Pd are not prominent catalysts towards the oxygen reduction (ORR), but their composite Pd-HPW catalyst produces a significantly higher electrochemical activity for the ORR in acidic media. The novel composite catalyst was synthesized by self-assembly of HPW on multi-walled carbon nanotubes (MWCNTs) via the electrostatic attraction between negatively charged HPW and positively charged poly(diallyldimethylammonium (PDDA)-wrapped MWCNTs, followed by dispersion of Pd nanoparticles onto the HPW-PDDA-MWCNT assembly. The as-prepared catalyst was characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). TEM images show that Pd nanoparticles were uniformly dispersed on the surface of MWCNTs even when the Pd loading was increased to 60 wt%. Electrochemical activity of the catalysts for the ORR was evaluated by steady state polarization measurements using a rotating disk electrode. Compared with the acid treated MWCNTs, Pd nanoparticles supported on the HPW-assembled MWCNTs show a much higher ORR activity that is comparable to conventional Pt/C catalysts. The high electrocatalytic activities could be related to high dispersion of Pd nanoparticles as well as synergistic effects originating from the high proton conductivity of HPW. The Pd/HPW-PDDA-MWCNTs system as the cathode catalyst in proton exchange membrane fuel cells is demonstrated.

14.
Anal Chem ; 82(14): 6203-7, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20557118

RESUMO

This paper reports on three-dimensional synchrotron radiation/Fourier transform-infrared microspectroscopy (SR/FT-IRM) imaging studies of water inclusions at the buried interface of solid-contact-ion-selective electrodes (SC-ISEs). It is our intention to describe a nondestructive method that may be used in surface studies of the buried interfaces of materials, especially multilayers of polymers. Herein, we demonstrate the power of SR/FT-IRM for studying water inclusions at the buried interfaces of SC-ISEs. A poly(methyl methacrylate)-poly(decyl methacyrlate) [PMMA-PDMA] copolymer revealed the presence of micrometer sized inclusions of water at the gold/membrane interface, while a coupling of a hydrophobic solid contact of poly(3-octylthiophene 2,5-diyl) (POT) prevented the accumulation of water at the buried interface. A similar study with a poly (3,4-ethylenedioxythiophene)/poly (styrenesulfonate) [PEDOT/PSS] solid contact also revealed an absence of distinct micrometer-sized pools of water; however, there were signs of absorption of water accompanied by swelling of the PEDOT/PSS underlayer, and these membrane zones are enriched with respect to water.


Assuntos
Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Síncrotrons , Água/química , Ouro/química , Eletrodos Seletivos de Íons , Tiofenos/química
15.
J Phys Chem A ; 114(11): 3855-62, 2010 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19810741

RESUMO

As a promising high-temperature fuel cell, the direct carbon fuel cell (DCFC) has a much higher efficiency and a lower emission as compared with conventional coal-fired power plants. To develop an increased understanding of the relationship between the microstructure, surface chemistry, and electrochemical performance of coal as a fuel for the DCFC, a coal sample from Central Queensland has been subjected to various pretreatments, including acid washing, air oxidation, and pyrolysis. It has been found that an acid treatment of the coal enhanced its electrochemical reactivity due to an increase in oxygen-containing surface functional groups. By contrast, heat treatment of the coal results in a sharp decrease in the electrochemical reactivity in the DCFC due to a decrease in the oxygen-containing surface functional groups, particularly CO(2)-yielding surface groups. A higher surface area of coal may also be helpful, but much less important than surface chemistry.

16.
Sci Adv ; 6(45)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33158858

RESUMO

Spintronics holds great potential for next-generation high-speed and low-power consumption information technology. Recently, lead halide perovskites (LHPs), which have gained great success in optoelectronics, also show interesting magnetic properties. However, the spin-related properties in LHPs originate from the spin-orbit coupling of Pb, limiting further development of these materials in spintronics. Here, we demonstrate a new generation of halide perovskites, by alloying magnetic elements into optoelectronic double perovskites, which provide rich chemical and structural diversities to host different magnetic elements. In our iron-alloyed double perovskite, Cs2Ag(Bi:Fe)Br6, Fe3+ replaces Bi3+ and forms FeBr6 clusters that homogenously distribute throughout the double perovskite crystals. We observe a strong temperature-dependent magnetic response at temperatures below 30 K, which is tentatively attributed to a weak ferromagnetic or antiferromagnetic response from localized regions. We anticipate that this work will stimulate future efforts in exploring this simple yet efficient approach to develop new spintronic materials based on lead-free double perovskites.

17.
J Solid State Electrochem ; 13(1): 137-148, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20802817

RESUMO

High integrity solid-contact (SC) polymeric ion sensors have been produced by using spin casting and electropolymerization techniques in the preparation of the SC employing the conductive polymer, poly(3-octylthiophene) [POT]. The physical and chemical integrity of the POT SCs have been evaluated using scanning electron microscopy (SEM), atomic force microscopy (AFM), secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). Furthermore, the electrochemical stability of SC polymeric ion sensors has been investigated using electrochemical impedance spectroscopy (EIS). The results of this study demonstrate that electropolymerization and spin casting methods also comprising annealing of the synthesized SC film are capable of producing SCs that are relatively free of imperfections such as pores and pinholes. This leads to electrochemically stable and robust polymeric ion sensors where the SC/sensor interface is resistant to the formation of a detrimental water layer that normally gives rise to spurious ion fluxes and a degradation in the sensitivity and selectivity of the SC polymeric ion sensor.

18.
Adv Sci (Weinh) ; 6(10): 1802066, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31131190

RESUMO

Iron single atom catalysts (Fe SACs) are the best-known nonprecious metal (NPM) catalysts for the oxygen reduction reaction (ORR) of polymer electrolyte membrane fuel cells (PEMFCs), but their practical application has been constrained by the low Fe SACs loading (<2 wt%). Here, a one-pot pyrolysis method is reported for the synthesis of iron single atoms on graphene (FeSA-G) with a high Fe SAC loading of ≈7.7 ± 1.3 wt%. The as-synthesized FeSA-G shows an onset potential of 0.950 V and a half-wave potential of 0.804 V in acid electrolyte for the ORR, similar to that of Pt/C catalysts but with a much higher stability and higher phosphate anion tolerance. High temperature SiO2 nanoparticle-doped phosphoric acid/polybenzimidazole (PA/PBI/SiO2) composite membrane cells utilizing a FeSA-G cathode with Fe SAC loading of 0.3 mg cm-2 delivers a peak power density of 325 mW cm-2 at 230 °C, better than 313 mW cm-2 obtained on the cell with a Pt/C cathode at a Pt loading of 1 mg cm-2. The cell with FeSA-G cathode exhibits superior stability at 230 °C, as compared to that with Pt/C cathode. Our results provide a new approach to developing practical NPM catalysts to replace Pt-based catalysts for fuel cells.

19.
Anal Chem ; 80(17): 6731-40, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18671410

RESUMO

This study aimed to develop a novel approach for the production of analytically robust and miniaturized polymeric ion sensors that are vitally important in modern analytical chemistry (e.g., clinical chemistry using single blood droplets, modern biosensors measuring clouds of ions released from nanoparticle-tagged biomolecules, laboratory-on-a-chip applications, etc.). This research has shown that the use of a water-repellent poly(methyl methacrylate)/poly(decyl methacrylate) (PMMA/PDMA) copolymer as the ion-sensing membrane, along with a hydrophobic poly(3-octylthiophene 2,5-diyl) (POT) solid contact as the ion-to-electron transducer, is an excellent strategy for avoiding the detrimental water layer formed at the buried interface of solid-contact ion-selective electrodes (ISEs). Accordingly, it has been necessary to implement a rigorous surface analysis scheme employing electrochemical impedance spectroscopy (EIS), in situ neutron reflectometry/EIS (NR/EIS), secondary ion mass spectrometry (SIMS), and small-angle neutron scattering (SANS) to probe structurally the solid-contact/membrane interface, so as to identify the conditions that eliminate the undesirable water layer in all solid-state polymeric ion sensors. In this work, we provide the first experimental evidence that the PMMA/PDMA copolymer system is susceptible to water "pooling" at the interface in areas surrounding physical imperfections in the solid contact, with the exposure time for such an event in a PMMA/PDMA copolymer ISE taking nearly 20 times longer than that for a plasticized poly(vinyl chloride) (PVC) ISE, and the simultaneous use of a hydrophobic POT solid contact with a PMMA/PDMA membrane can eliminate totally this water layer problem.


Assuntos
Polímeros/química , Água/química , Impedância Elétrica , Eletroquímica , Eletrodos , Interações Hidrofóbicas e Hidrofílicas , Difração de Nêutrons , Nêutrons , Cloreto de Polivinila/química , Espalhamento a Baixo Ângulo , Sensibilidade e Especificidade , Prata/química , Espectrometria de Massa de Íon Secundário , Análise Espectral , Propriedades de Superfície
20.
Adv Mater ; 30(13): e1706287, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29423964

RESUMO

Single-atom catalysts (SACs) are the smallest entities for catalytic reactions with projected high atomic efficiency, superior activity, and selectivity; however, practical applications of SACs suffer from a very low metal loading of 1-2 wt%. Here, a class of SACs based on atomically dispersed transition metals on nitrogen-doped carbon nanotubes (MSA-N-CNTs, where M = Ni, Co, NiCo, CoFe, and NiPt) is synthesized with an extraordinarily high metal loading, e.g., 20 wt% in the case of NiSA-N-CNTs, using a new multistep pyrolysis process. Among these materials, NiSA-N-CNTs show an excellent selectivity and activity for the electrochemical reduction of CO2 to CO, achieving a turnover frequency (TOF) of 11.7 s-1 at -0.55 V (vs reversible hydrogen electrode (RHE)), two orders of magnitude higher than Ni nanoparticles supported on CNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA