Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991192

RESUMO

The genomics era has facilitated discovery of new genes predisposing to bone marrow failure (BMF) and hematological malignancy (HM). We report the discovery of ERG as a novel autosomal dominant BMF/HM predisposition gene. ERG is a highly constrained transcription factor critical for definitive hematopoiesis, stem cell function and platelet maintenance. ERG colocalizes with other transcription factors including RUNX1 and GATA2 on promoters/enhancers of genes orchestrating hematopoiesis. We identified a rare heterozygous ERG missense variant in 3 thrombocytopenic individuals from one family and 14 additional ERG variants in unrelated individuals with BMF/HM including 2 de novo cases and 3 truncating variants. Phenotypes associated with pathogenic germline ERG variants included cytopenias (thrombocytopenia, neutropenia, pancytopenia) and HMs (acute myeloid leukemia, myelodysplastic syndrome, acute lymphoblastic leukemia) with onset before 40 years. Twenty ERG variants (19 missense, 1 truncating) including 3 missense population variants were functionally characterized. Thirteen potentially pathogenic ETS domain missense variants displayed loss-of-function characteristics disrupting transcriptional transactivation, DNA-binding and/or nuclear localization. Selected variants overexpressed in mouse fetal liver cells failed to drive myeloid differentiation and cytokine-independent growth in culture, and to promote acute erythroleukemia when transplanted into mice, concordant with these variants being loss-of-function. Four individuals displayed somatic genetic rescue by copy neutral loss of heterozygosity. Identification of predisposing germline ERG variants has clinical implications for patient/family diagnosis, counselling, surveillance, and treatment strategies including selection of bone marrow donors or cell/gene therapy.

2.
Circ Genom Precis Med ; 17(2): e004416, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38516780

RESUMO

BACKGROUND: Preimplantation genetic testing (PGT) is a reproductive technology that selects embryos without (familial) genetic variants. PGT has been applied in inherited cardiac disease and is included in the latest American Heart Association/American College of Cardiology guidelines. However, guidelines selecting eligible couples who will have the strongest risk reduction most from PGT are lacking. We developed an objective decision model to select eligibility for PGT and compared its results with those from a multidisciplinary team. METHODS: All couples with an inherited cardiac disease referred to the national PGT center were included. A multidisciplinary team approved or rejected the indication based on clinical and genetic information. We developed a decision model based on published risk prediction models and literature, to evaluate the severity of the cardiac phenotype and the penetrance of the familial variant in referred patients. The outcomes of the model and the multidisciplinary team were compared in a blinded fashion. RESULTS: Eighty-three couples were referred for PGT (1997-2022), comprising 19 different genes for 8 different inherited cardiac diseases (cardiomyopathies and arrhythmias). Using our model and proposed cutoff values, a definitive decision was reached for 76 (92%) couples, aligning with 95% of the multidisciplinary team decisions. In a prospective cohort of 11 couples, we showed the clinical applicability of the model to select couples most eligible for PGT. CONCLUSIONS: The number of PGT requests for inherited cardiac diseases increases rapidly, without the availability of specific guidelines. We propose a 2-step decision model that helps select couples with the highest risk reduction for cardiac disease in their offspring after PGT.


Assuntos
Tomada de Decisão Clínica , Doenças Genéticas Inatas , Testes Genéticos , Cardiopatias , Diagnóstico Pré-Implantação , Encaminhamento e Consulta , Feminino , Humanos , Testes Genéticos/métodos , Cardiopatias/congênito , Cardiopatias/diagnóstico , Cardiopatias/genética , Cardiopatias/prevenção & controle , Diagnóstico Pré-Implantação/métodos , Masculino , Tomada de Decisão Clínica/métodos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Gestão de Riscos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/prevenção & controle , Heterozigoto , Estudos Prospectivos , Características da Família
3.
Horm Res Paediatr ; : 1-11, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38952118

RESUMO

INTRODUCTION: The clinical features of bi-allelic IGF1 defects are well established, i.e., severe growth failure and microcephaly, delayed psychomotor development, and sensorineural deafness. However, information on clinical and endocrine consequences of heterozygous IGF1 variants and treatment options is scarce. We aimed at extending the knowledge base of the clinical presentation and growth response to recombinant human growth hormone (rhGH) of patients carrying such variants. METHODS: Retrospective case series of patients with pathogenic heterozygous IGF1 variants. RESULTS: Nine patients from six families were included, harbouring five whole or partial gene deletions and one frameshift variant resulting in a premature stop codon (three de novo, one unknown inheritance). In the other two families, variants segregated with short stature. Mean (SD) birth length was -1.9 (1.3) SDS (n = 7), height -3.8 (0.6) SDS, head circumference -2.5 (0.6) SDS, serum IGF-I -1.9 (0.7) SDS, serum IGFBP-3 1.1 (0.4) SDS (n = 7), and GH peak range 5-31 µg/L (n = 4). Five patients showed feeding problems in infancy. Average height increased after 1 and 2 years of rhGH treatment by 0.8 SDS (range 0.3-1.3 SDS) and 1.3 SDS (range 0.5-2.0 SDS), respectively. Adult height in 2 patients was -2.8 and -1.3 SDS, which was, respectively, 1.3 and 2.9 SDS taller than predicted before start of treatment. CONCLUSION: Haploinsufficiency of IGF1 causes a variable phenotype of prenatal and postnatal growth failure, microcephaly, feeding difficulties, low/low-normal serum IGF-I values in contrast to serum IGFBP-3 in the upper-normal range. Treatment with rhGH increased growth in the first 2 years of treatment, and in 2 patients adult height after treatment was higher than predicted at treatment initiation.

4.
Nat Commun ; 15(1): 1640, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388531

RESUMO

THOC6 variants are the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 is critical for mammalian Transcription Export complex (TREX) tetramer formation, which is composed of four six-subunit THO monomers. The TREX tetramer facilitates mammalian RNA processing, in addition to the nuclear mRNA export functions of the TREX dimer conserved through yeast. Human and mouse TIDS model systems revealed novel THOC6-dependent, species-specific TREX tetramer functions. Germline biallelic Thoc6 loss-of-function (LOF) variants result in mouse embryonic lethality. Biallelic THOC6 LOF variants reduce the binding affinity of ALYREF to THOC5 without affecting the protein expression of TREX members, implicating impaired TREX tetramer formation. Defects in RNA nuclear export functions were not detected in biallelic THOC6 LOF human neural cells. Instead, mis-splicing was detected in human and mouse neural tissue, revealing novel THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for key signaling pathways known to regulate the transition from proliferative to neurogenic divisions during human corticogenesis. Together, these findings implicate altered RNA processing in the developmental biology of TIDS neuropathology.


Assuntos
Deficiência Intelectual , RNA , Estilbenos , Ácidos Sulfônicos , Humanos , Animais , Camundongos , RNA/metabolismo , Deficiência Intelectual/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processamento Pós-Transcricional do RNA , Transporte de RNA , Mamíferos/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA