Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-24561378

RESUMO

The organoselenium compound, dicholesteroyl diselenide (DCDS) is a structural analogue of diphenyl diselenide (DPDS) and may be considered as a promising antioxidant drug in vivo. Nevertheless, little is known about the toxicological properties of DCDS. In the present study we evaluated the cytotoxic, genotoxic and mutagenic properties of DCDS in Chinese hamster lung fibroblasts (V79) and in strains of the yeast Saccharomyces cerevisiae, proficient and deficient in several DNA-repair pathways. The results with V79 cells show that DCDS induced cytotoxicity, GSH depletion and elevation of lipid peroxidation at lower concentrations than did DPDS. DCDS also generated single- and double-strand DNA breaks in V79 cells, both in the presence and in the absence of metabolic activation, as revealed by alkaline and neutral comet assays. Moreover, the induction of oxidative DNA base-damage was demonstrated by means of a modified comet assay with formamidopyrimidine-DNA glycosylase and endonuclease III. Treatment with DCDS also induced micronucleus formation in V79 cells as well as point and frame-shift mutations in a haploid wild-type strain of S. cerevisiae. Yeast mutants defective in base excision-repair proteins were the most sensitive to DCDS. Pre-incubation with N-acetylcysteine reduced DCDS's oxidative, genotoxic and mutagenic effects in yeast and in V79 cells. Our findings indicate that the presence of cholesteroyl substituents in DCDS results in elevation of its cytotoxic and genotoxic potential compared with that of DPDS in yeast and in V79 cells. However, due to dose-dependent contrasting behaviour of organoselenium compounds and differences in their toxicity in in vitro and in vivo systems, further studies are needed in order to establish the non-toxic concentration range for treatment in mammals.


Assuntos
Colesterol/análogos & derivados , Dano ao DNA , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Mutagênicos/toxicidade , Compostos Organosselênicos/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacos , Animais , Biomarcadores/análise , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colesterol/toxicidade , Ensaio Cometa , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Mutação da Fase de Leitura/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Testes para Micronúcleos , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Testes de Toxicidade/métodos
2.
Toxicology ; 508: 153902, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39094917

RESUMO

Glyphosate, the world's most widely used herbicide, has a low toxicity rating despite substantial evidence of adverse health effects. Furthermore, glyphosate-based formulations (GBFs) contain several other chemicals, some of which are known to be harmful. Additionally, chronic, and acute exposure to GBFs among rural workers may lead to health impairments, such as neurodegenerative diseases and cancer. P53 is known as a tumor suppressor protein, acting as a key regulator of the cellular response to stress and DNA damage. Therefore, mutations in the TP53 gene, which encodes p53, are common genetic alterations found in various types of cancer. Therefore, this study aimed to evaluate the cytotoxicity and genotoxicity of GBF in two glioblastoma cell lines: U87MG (TP53-proficient) and U251MG (TP53-mutant). Additionally, the study aimed to identify the main proteins involved in the response to GBF exposure using Systems Biology in a network containing p53 and another network without p53. The MTT assay was used to study the toxicity of GBF in the cell lines, the clonogenic assay was used to investigate cell survival, and the Comet Assay was used for genotoxicity evaluation. For data analysis, bioinformatics tools such as String 12.0 and Stitch 5.0 were applied, serving as a basis for designing binary networks in the Cytoscape 3.10.1 program. From the in vitro test analyses, it was observed a decrease in cell viability at doses starting from 10 ppm. Comet Assay at concentrations of 10 ppm and 30 ppm for the U251MG and U87MG cell lines, respectively observed DNA damage. The network generated with systems biology showed that the presence of p53 is important for the regulation of biological processes involved in genetic stability and neurotoxicity, processes that did not appear in the TP53-mutant network.


Assuntos
Sobrevivência Celular , Dano ao DNA , Glioblastoma , Glicina , Glifosato , Herbicidas , Proteína Supressora de Tumor p53 , Humanos , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Mutação , Relação Dose-Resposta a Droga
3.
Artigo em Inglês | MEDLINE | ID: mdl-39364577

RESUMO

Valproic acid (VA) is a widely used drug for the treatment of diseases affecting the central nervous system. Due to its epigenetic modulatory potential, it has been studied for possible therapeutic application in anticancer therapies. However, the VA exhibits different side effects in its application. Thus, synthetic coordination complexes with valproate can generate promising candidates for new active drugs with reduced toxicity. In this sense, we investigated the genotoxic and mutagenic potential of the sodium valproate and of the mixed ternary mononuclear Mg complex based on VA with 1,10-phenanthroline (Phen) ligand - [Mg (Valp)2Phen], in Saccharomyces cerevisiae and V79 cells. The MTT and clonal survival assays in V79 cells indicated that the Mg complex has higher cytotoxicity than sodium valproate. A similar cytotoxicity profile is observed in yeast. This fact is possibly due to the intercalation capacity of [Mg(Valp)2Phen], inducing DNA strand breaks, as observed in the comet assay and micronucleus test. In this sense, members of the NER, HR, NHEJ and TLS repair pathways are required for the repair of DNA lesions induced by [Mg(Valp)2Phen]. Interestingly, BER proteins apparently increase the cytotoxic potential of the drug. Furthermore, the [Mg(Valp)2Phen] showed higher cytotoxicity in V79 cells and yeast when compared to sodium valproate indicating applicability as a cytotoxic agent.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37770144

RESUMO

Callingcard Vine (Entada polystachya (L.) DC. var. polystachya - Fabaceae) is a common plant in coastal thickets from western Mexico through Central America to Colombia and Brazil, especially in Amazon biome. It has been popularly used as a urinary burning reliever and diuretic. However, the plant chemical constituents are poorly understood and Entada spp. genotoxic potential have not been previously investigated. In the present study we determined the chemical composition of the aqueous E. polystachya crude seed extract (EPCSE) and evaluated the cytotoxic, genotoxic and mutagenic properties of EPCSE in Salmonella typhimurium and Chinese hamster fibroblast (V79) cells. Cytotoxic activity was also evaluated in tumor cell lines (HT29, MCF7 and U87) and non-malignant cells (MRC5). The chemical analysis by High Resolution Mass Spectrometry (HRMS) of EPCSE indicated the presence of saponin and chalcone. The results of the MTT and clonal survival assays suggest that EPCSE is cytotoxic to V79 cells. Survival analysis showed higher IC50 in non-tumor compared with tumor cell lines. EPCSE showed induction of DNA strand breaks as revealed by the alkaline comet assay and micronucleus test. Using the modified comet assay, it was possible to detect the induction of oxidative DNA base damage by EPCSE in V79 cells. Consistently, the extract induced increase lipid peroxidation (TBARS), superoxide dismutase (SOD) and catalase (CAT) activities in V79 cells. In addition, EPCSE induced mutations in S. typhimurium TA98 and TA100 strains, confirming a mutagenic potential. Taken together, our results suggest that EPCSE is cytotoxic and genotoxic to V79 cells and mutagenic to S. typhimurium. These properties can be related to the pro-oxidant ability of the extract and induction of DNA lesions. Additionally, EPCSE could inhibit the growth of tumor cells, especially human colorectal adenocarcinoma (HT29) cell line, and can constitute a possible source of antitumor natural agents.


Assuntos
Antineoplásicos , Fabaceae , Cricetinae , Animais , Humanos , Mutagênicos/toxicidade , Dano ao DNA , Cricetulus , Ensaio Cometa , Linhagem Celular Tumoral , Extratos Vegetais/toxicidade , DNA
5.
Oncotarget ; 14: 637-649, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37343056

RESUMO

Diphenyl ditelluride (DPDT) is an organotellurium (OT) compound with pharmacological properties, including antioxidant, antigenotoxic and antimutagenic activities when applied at low concentrations. However, DPDT as well as other OT compounds also show cytotoxicity against mammalian cells when treatments occur at higher drug concentrations. Considering that the underlying mechanisms of toxicity of DPDT against tumor cells have been poorly explored, the objective of our study was to investigate the effects of DPDT against both human cancer and non-tumorigenic cells. As a model, we used the colonic HCT116 cancer cells and the MRC5 fibroblasts. Our results showed that DPDT preferentially targets HCT116 cancer cells when compared to MRC5 cells with IC50 values of 2.4 and 10.1 µM, respectively. This effect was accompanied by the induction of apoptosis and a pronounced G2/M cell cycle arrest in HCT116 cells. Furthermore, DPDT induces DNA strand breaks at concentrations below 5 µM in HCT116 cells and promotes the occurrence of DNA double strand breaks mostly during S-phase as measured by γ-H2AX/EdU double staining. Finally, DPDT forms covalent complexes with DNA topoisomerase I, as observed by the TARDIS assay, with a more prominent effect observed in HCT116 than in MRC5 cells. Taken together, our results show that DPDT preferentially targets HCT116 colon cancer cells likely through DNA topoisomerase I poisoning. This makes DPDT an interesting molecule for further development as an anti-proliferative compound in the context of cancer.


Assuntos
Neoplasias do Colo , DNA Topoisomerases Tipo I , Animais , Humanos , Células HCT116 , DNA Topoisomerases Tipo I/metabolismo , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , DNA , Mamíferos/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-34454693

RESUMO

The sodium valproate has been largely used as an anti-epilepsy drug and, recently, as a putative drug in cancer therapy. However, the treatment with sodium valproate has some adverse effects. In this sense, more effective and secure complexes than sodium valproate should be explored in searching for new active drugs. This study aims to evaluate the cytotoxicity of sodium valproate, mixed ternary mononuclear Cu(II) complexes based on valproic acid (VA) with 1,10-phenanthroline (Phen) or 2,2'- bipyridine (Bipy) ligands - [Cu2(Valp)4], [Cu(Valp)2Phen] and [Cu(Valp)2Bipy] - in yeast Saccharomyces cerevisiae, proficient or deficient in different repair pathways, such as base excision repair (BER), nucleotide excision repair (NER), translesion synthesis (TLS), DNA postreplication repair (PRR), homologous recombination (HR) and non-homologous end-joining (NHEJ). The results indicated that the Cu(II) complexes have higher cytotoxicity than sodium valproate in the following order: [Cu(Valp)2Phen] > [Cu(Valp)2Bipy] > [Cu2(Valp)4] > sodium valproate. The treatment with Cu(II) complexes and sodium valproate induced mutations in S. cerevisiae. The data indicated that yeast strains deficient in BER (Ogg1p), NER (complex Rad1p-Rad10p) or TLS (Rev1p, Rev3p and Rad30p) proteins are associated with increased sensitivity to sodium valproate. The BER mutants (ogg1Δ, apn1Δ, rad27Δ, ntg1Δ and ntg2Δ) showed increased sensitivity to Cu(II) complexes. DNA damage induced by the complexes requires proteins from NER (Rad1p and Rad10p), TLS (Rev1p, Rev3p and Rad30p), PRR (Rad6 and Rad18p) and HR (Rad52p and Rad50p) for efficient repair. Therefore, Cu(II) complexes display enhanced cytotoxicity when compared to the sodium valproate and induce distinct DNA lesions, indicating a potential application as cytotoxic agents.


Assuntos
Cobre/farmacologia , Reparo do DNA/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Fenantrolinas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Ácido Valproico/farmacologia , DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Ligantes , Mutação/efeitos dos fármacos , Recombinação Genética/efeitos dos fármacos
7.
Yeast ; 27(2): 89-102, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19904831

RESUMO

The nitroreductase family is comprised of a group of FMN- or FAD-dependent enzymes that are able to metabolize nitrosubstituted compounds using the reducing power of NAD(P)H. These nitroreductases can be found in bacterial species and, to a lesser extent, in eukaryotes. There is little information on the biochemical functions of nitroreductases. Some studies suggest their possible involvement in the oxidative stress response. In the yeast Saccharomyces cerevisiae, two nitroreductase proteins, Frm2p and Hbn1p, have been described. While Frm2p appears to act in the lipid signalling pathway, the function of Hbn1p is completely unknown. In order to elucidate the functions of Frm2p and Hbn1p, we evaluated the sensitivity of yeast strains, proficient and deficient in both oxidative stress proteins, for respiratory competence, antioxidant-enzyme activities, intracellular reactive oxygen species (ROS) production and lipid peroxidation. We found reduced basal activity of superoxide dismutase (SOD), ROS production, lipid peroxidation and petite induction and higher sensitivity to 4-nitroquinoline-oxide (4-NQO) and N-nitrosodiethylamine (NDEA), as well as higher basal activity of catalase (CAT) and glutathione peroxidase (GPx) and reduced glutathione (GSH) content in the single and double mutant strains frm2Delta and frm2Delta hbn1Delta. These strains exhibited less ROS accumulation and lipid peroxidation when exposed to peroxides, H(2)O(2) and t-BOOH. In summary, the Frm1p and Hbn1p nitroreductases influence the response to oxidative stress in S. cerevisae yeast by modulating the GSH contents and antioxidant enzymatic activities, such as SOD, CAT and GPx.


Assuntos
Nitrorredutases/metabolismo , Estresse Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Antioxidantes/metabolismo , Catalase/metabolismo , Dietilnitrosamina/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Mutação , Nitrorredutases/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Superóxido Dismutase/metabolismo
8.
Mutagenesis ; 25(3): 257-69, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20123696

RESUMO

Diphenyl ditelluride (DPDT) is a potential prototype for the development of novel biologically active molecules. Thus, it is important to evaluate the toxic effects of this compound. In the present study, we evaluated the cytotoxic, genotoxic and mutagenic properties of DPDT in Chinese hamster fibroblast (V79) cells, in strains of the yeast Saccharomyces cerevisiae both proficient and deficient in several DNA repair pathways and in Salmonella typhimurium. DPDT induced frameshift mutations in both S.typhimurium and a haploid wild-type strain of S.cerevisiae. Mutants of S.cerevisiae defective in base excision repair and recombinational repair were more sensitive to DPDT. The results of a lactate dehydrogenase leakage assay suggest that DPDT is cytotoxic to V79 cells. At cytotoxic concentrations, this compound increased thiobarbituric reactive species levels and decreased the glutathione:GSSH ratio in yeast and V79 cells. DPDT generated single- and double-strand DNA breaks in V79 cells, both with and without metabolic activation, as revealed by alkaline and neutral comet assays. Moreover, an induction of oxidative DNA base damage was indicated by a modified comet assay using formamidopyrimidine DNA glycosylase and endonuclease III. Treatment with DPDT also induced micronucleus formation in V79 cells. Pre-incubation with N-acetylcysteine reduced DPDT's oxidative, genotoxic and mutagenic effects in yeast and V79 cells. Our results suggest that the toxic and mutagenic properties of DPDT may stem from its ability to disturb the redox balance of the cell, which leads to oxidative stress and the induction of DNA damage.


Assuntos
Derivados de Benzeno/toxicidade , Modelos Biológicos , Mutagênicos/toxicidade , Compostos Organometálicos/toxicidade , Animais , Derivados de Benzeno/química , Biomarcadores/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cricetinae , Cricetulus , Dano ao DNA , L-Lactato Desidrogenase/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Testes de Mutagenicidade , Mutagênicos/química , Compostos Organometálicos/química , Estresse Oxidativo/efeitos dos fármacos , Mutação Puntual/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Salmonella/citologia , Salmonella/efeitos dos fármacos , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
9.
Mutat Res ; 628(2): 76-86, 2007 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-17267262

RESUMO

The Guaíba Basin is a source of drinking water for Porto Alegre (RS, Brazil). The water from this basin receives industrial, urban, and rural waste from many sources. The mussel species Limnoperna fortunei was chosen based on population data, distribution, and sensitivity. Previous tests with comet assay and micronuclei frequency in this freshwater mussel have shown to be successful in biomonitoring studies. The aim of this study was to evaluate the genotoxic contamination of the Guaíba Lake Hydrographic Region, through the determination of damage by the micronuclei and comet assays in L. fortunei (golden mussel). Nine sampling sites were evaluated in three different seasons: five sites in the mouths of the main rivers that flow into Guaíba lake; one site at the mouth of a stream; one major site of sewage discharge; two sites at Guaíba lake, near a sewage discharge; and the control site in a preservation area. DNA damage was detected by the single cell gel assay, as well as the frequency of micronuclei in hemocytes of mussels exposed under laboratory conditions for 7 days to water and sediment samples. Significant results were found in different seasons in almost all sampling sites (P<0.05, ANOVA Dunnet's test). Most of the positive results were found in samples affected mainly by urban effluents. It was possible to observe that there was a weak relation between mutagenic and genotoxic responses and mussels inorganic elements contents. Seasonal variation was observed at different sampling sites, but always indicating a huge contamination near urban sewage discharge. These results are consistent with previous studies, allowing us to infer that urban contamination is the biggest problem in this region. It is also possible to infer that L. fortunei is a good sentinel organism for the Guaíba Basin.


Assuntos
Ensaio Cometa/métodos , Dano ao DNA , Testes para Micronúcleos/métodos , Animais , Bivalves , Brasil , Água Doce/análise , Substâncias Perigosas/toxicidade , Estações do Ano , Poluição Química da Água/análise
10.
Neurosci Lett ; 633: 182-188, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27666978

RESUMO

Cell-based therapy provides a novel strategy to restore lost neurons or modulate the degenerating microenvironment in amyotrophic lateral sclerosis (ALS). This study verified the therapeutic potential of bone marrow mononuclear cells (BMMCs) in SOD1G93A mice. BMMCs were obtained from enhanced green fluorescent protein (EGFP) transgenic C57BL/6 mice (EGFPBMMCs) or from SOD1G93A transgenic mice (mSOD1BMMCs) and given to mice at the pre-symptomatic or late symptomatic stage. Survival, body weight and motor performance data were recorded. DNA integrity was evaluated using the alkaline comet assay. The spinal cords were collected to assess motoneuron preservation and cell migration. EGFPBMMCs and mSOD1BMMCs transplantation to pre-symptomatic SOD1G93A mice prolonged survival and delayed disease progression. The effects were more significant for the EGFPBMMC-transplanted mice. In late symptomatic mice, EGFPBMMCs promoted a discrete increase in survival, without other clinical improvements. DNA from EGFPBMMCs and mSOD1BMMCs was found in the spinal cords of transplanted animals. DNA damage was not modified by BMMCs in any of the studied groups. Despite positive behavioral effects observed in our study, the limited results we observed for late transplanted mice call for caution before clinical application of BMMCs in ALS.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Transplante de Medula Óssea , Neurônios/patologia , Esclerose Lateral Amiotrófica/mortalidade , Esclerose Lateral Amiotrófica/patologia , Animais , Morte Celular , Sobrevivência Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Transgênicos , Neurônios Motores/patologia , Superóxido Dismutase/genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA