Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; 45(2): 688-697, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32448000

RESUMO

Endophytic fungi are promising sources of bioactive substances; however, their secondary metabolites are toxic to plants, animals, and humans. This study aimed toevaluate the toxic, cytotoxic, mutagenic and oxidant/antioxidant activities of acetonitrile extract (AEPc), citrinin (CIT) and dicitrinin-A (DIC-A) of Penicillium citrinum. For this, the test substances at 0.5; 1.0; 1.5 and 2 µg/mLwere exposed for 24 and 48 h in Artemia salina, and 48 h in Allium cepa test systems. The oxidant/antioxidant test was evaluated in pre-, co- and post-treatment with the stressor hydrogen peroxide (H2O2) in Saccharomyces cerevisiae. The results suggest that the AEPc, CIT and DIC-A at 0.5; 1.0; 1.5 and 2 µg/mL showed toxicity in A. saline, with LC50 (24 h) of 2.03 µg/mL, 1.71 µg/mL and 2.29 µg/mL, and LC50 (48 h) of 0.51 µg/mL, 0.54 µg/mL and 0.54 µg/mL, respectively.In A. cepa, the test substances also exerted cytotoxic and mutagenic effects. The AEPc, CIT and DIC-A at lower concentrations modulated the damage induced by H2O2 in the proficient and mutant strains of S. cerevisiae for cytoplasmic and mitochondrial superoxide dismutase. Moreover, the AEPc at 2 µg/mL and CIT at the two highest concentrations did not affect the H2O2-induced DNA damage in the test strains. In conclusion, AEPc, CIT and DIC-A of P. citrinum may exert their toxic, cytotoxic and mutagenic effects in the test systems possibly through oxidative stress induction pathway.


Assuntos
Citrinina , Acetonitrilas/toxicidade , Animais , Citrinina/toxicidade , Humanos , Peróxido de Hidrogênio/toxicidade , Penicillium , Extratos Vegetais/toxicidade , Saccharomyces cerevisiae/genética
2.
Phytother Res ; 35(1): 504-516, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32869401

RESUMO

Breast cancer is one of the most lethal types of cancer and a leading cause of mortality among Women worldwide. Citrinin (CIT), a polyketide extracted from the fungus Penicillium citrinum, exhibits a wide range of biological activities such as antibacterial, antifungal, and cytotoxic effects. The aim of the current study was to evaluate the antitumoral effects of CIT against 7,12-dimethylbenzanthracene (DMBA)-induced mammary carcinoma in Swiss mice For this, CIT, DMBA and the standard cyclophosphamide (CPA) induced behavioral changes in experimental animals, and these changes were screened by using the rota rod and open field tests. Additionally, hematological, biochemical, immuno-histochemical, and histopathological analyses were carried out. Results suggest that CIT did not alter behavioral, hematological, and biochemical parameters in mice. DMBA induced invasive mammary carcinoma and showed genotoxic effects in the breasts, bone marrow, lymphocytes, and hepatic cells. It also caused mutagenic effects in the formation of micronuclei, bridges, shoots, and binucleate cells in bone marrow and liver. CIT and CPA genotoxic effects were observed after 3 weeks of therapy, where CIT exhibited a repair capacity and induced significant apoptotic damage in mouse lymphocytes. In conclusion, CIT showed antitumoral effects in Swiss mice, possibly through induction of apoptosis.


Assuntos
Antineoplásicos/farmacologia , Citrinina/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Penicillium/química , 9,10-Dimetil-1,2-benzantraceno , Animais , Apoptose/efeitos dos fármacos , Ciclofosfamida/farmacologia , Dano ao DNA/efeitos dos fármacos , Feminino , Camundongos , Mutagênicos , Neoplasias Experimentais/química
3.
Pharmaceutics ; 16(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38399235

RESUMO

The study aimed to evaluate the antitumor and toxicogenetic effects of liposomal nanoformulations containing citrinin in animal breast carcinoma induced by 7,12-dimethylbenzanthracene (DMBA). Mus musculus virgin females were divided into six groups treated with (1) olive oil (10 mL/kg); (2) 7,12-DMBA (6 mg/kg); (3) citrinin, CIT (2 mg/kg), (4) cyclophosphamide, CPA (25 mg/kg), (5) liposomal citrinin, LP-CIT (2 µg/kg), and (6) LP-CIT (6 µg/kg). Metabolic, behavioral, hematological, biochemical, histopathological, and toxicogenetic tests were performed. DMBA and cyclophosphamide induced behavioral changes, not observed for free and liposomal citrinin. No hematological or biochemical changes were observed for LP-CIT. However, free citrinin reduced monocytes and caused hepatotoxicity. During treatment, significant differences were observed regarding the weight of the right and left breasts treated with DMBA compared to negative controls. Treatment with CPA, CIT, and LP-CIT reduced the weight of both breasts, with better results for liposomal citrinin. Furthermore, CPA, CIT, and LP-CIT presented genotoxic effects for tumor, blood, bone marrow, and liver cells, although less DNA damage was observed for LP-CIT compared to CIT and CPA. Healthy cell damage induced by LP-CIT was repaired during treatment, unlike CPA, which caused clastogenic effects. Thus, LP-CIT showed advantages for its use as a model of nanosystems for antitumor studies.

4.
Biomed Pharmacother ; 126: 110004, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32145583

RESUMO

BACKGROUND: [6]-Gingerol [(S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone] is a phenolic substance reported for several ethnopharmacological usage by virtue of its antioxidant, antiemetic, anti-inflammatory and anticancer properties. This study assessed the antitumoral effects of [6]-Gingerol in primary cells of Sarcoma 180 as well as in peripheral blood lymphocytes of mice. METHODS: The effect of [6]-Gingerol was assessed by applying cytogenetic biomarkers as indicative of genotoxicity, mutagenicity and apoptosis. Ascitic liquid cells were treated with [6]-Gingerol at concentrations of 21.33, 42.66 and 85.33 µM and subjected to the cytotoxicity assays using Trypan blue test and the comet assay, as well as the cytokinesis-block micronucleus assay. Doxorubicin (6 µM) and hydrogen peroxide (85.33 µM) were used as positive controls. RESULTS: [6]-Gingerol, especially at concentrations of 42.66 and 85.33 µM, showed notable cytotoxicity in Sarcoma 180 cells by reducing cell viability and cell division rates via induction of apoptosis. Genotoxicity at the concentrations used was punctuated by the increase in the index and frequency of DNA damage in tested groups. [6]-Gingerol, at all concentrations tested, did not induce significant aneugenic and/or clastogenic effects. It did, however, induced other nuclear abnormalities, such as nucleoplasmic bridges, nuclear buds and apoptosis. The genotoxic effects observed in the cotreatment with H2O2 (challenge assay) employing neoplastic and healthy cells, indicated that [6]-Gingerol may induce oxidative stress. CONCLUSIONS: Observations suggest that [6]-Gingerol may be a candidate for pharmaceutical antitumoral formulations due to its cytotoxicity and to mechanisms associated with genetic instability generated by nuclear alterations especially by apoptosis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Sarcoma/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos
5.
Oxid Med Cell Longev ; 2020: 3457890, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308801

RESUMO

Omeprazole (OME) is commonly used to treat gastrointestinal disorders. However, long-term use of OME can increase the risk of gastric cancer. We aimed to characterize the pharmacological effects of OME and to correlate its adverse effects and toxicogenetic risks to the genomic instability mechanisms and cancer-based on database reports. Thus, a search (till Aug 2019) was made in the PubMed, Scopus, and ScienceDirect with relevant keywords. Based on the study objective, we included 80 clinical reports, forty-six in vitro, and 76 in vivo studies. While controversial, the findings suggest that long-term use of OME (5 to 40 mg/kg) can induce genomic instability. On the other hand, OME-mediated protective effects are well reported and related to proton pump blockade and anti-inflammatory activity through an increase in gastric flow, anti-inflammatory markers (COX-2 and interleukins) and antiapoptotic markers (caspases and BCL-2), glycoprotein expression, and neutrophil infiltration reduction. The reported adverse and toxic effects, especially in clinical studies, were atrophic gastritis, cobalamin deficiencies, homeostasis disorders, polyp development, hepatotoxicity, cytotoxicity, and genotoxicity. This study highlights that OME may induce genomic instability and increase the risk of certain types of cancer. Therefore, adequate precautions should be taken, especially in its long-term therapeutic strategies and self-medication practices.


Assuntos
Instabilidade Genômica/efeitos dos fármacos , Neoplasias/etiologia , Omeprazol/efeitos adversos , Inibidores da Bomba de Prótons/efeitos adversos , Animais , Humanos , Ratos
6.
Biomed Pharmacother ; 115: 108873, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31003079

RESUMO

Gingerol - [6]-gingerol ((S)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-decanone; [6]-G) - is a phenolic compound with several pharmacological properties. Herein, the aim of the study was to evaluate the toxicogenic effects of [6]-G on Artemia salina nauplii, Allium cepa, HL-60 cell line and Sarcoma 180 (S-180) ascitic fluid cells.For toxic and genotoxic analysis, it was used [6]-G concentrations of 5, 10, 20 and 40 µg mL-1. For cytotoxic evaluation using the MTT test (3- [4,5-dimethyl-thiazol-2-yl] -2,5-diphenyl tetrazolium bromide), serial [6]-G dilutions (1.56-100 µg mL-1) were performed, and S-180, HL-60 and peripheral blood mononuclear cells (PBMC) were treated for 72 h. The IC50 of [6]-G were 1.14, 5.73 and 11.18 µg mL-1 for HL-60, S-180 and PBMC, respectively, indicating a possible selectivity against tumor cell lines. At higher concentrations (>10 µg mL-1), toxicity and genotoxicity were observed in the A. cepa test, especially at 40 µg mL-1. Mechanisms indicating apoptosis, such as toxicity, cytotoxicity and nuclear abnormalities (bridges, fragments, delays, loose chromosomes and micronuclei) suggest that [6]-G has potential for antitumor pharmaceutical formulations.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Bioensaio , Catecóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Álcoois Graxos/farmacologia , Animais , Artemia/efeitos dos fármacos , Catecóis/administração & dosagem , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Álcoois Graxos/administração & dosagem , Humanos , Camundongos , Cebolas/citologia
7.
Food Chem Toxicol ; 110: 130-141, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28993214

RESUMO

Citrinin (CIT) is a mycotoxin which causes contamination in the food and is associated with different toxic effects. A web search on CIT has been conducted covering the timespan since 1946. The accumulated data indicate that CIT is produced by several fungal strains belonging to Penicillium, Aspergillus and Monascus genera, and is usually found together with another nephrotoxic mycotoxin, ochratoxin A. Although, it is evident that CIT exposure can exert toxic effects on the heart, liver, kidney, as well as reproductive system, the mechanism of CIT-induced toxicity remains largely elusive. It is still controversial what are the genotoxic and mutagenic effects of CIT. Until now, its toxic effect has been linked to the CIT-mediated oxidative stress and mitochondrial dysfunction in biological systems. However, the toxicity strongly depends on its concentration, route, frequency and time of exposure, as well as from the used test systems. Besides the toxic effects, CIT is also reported to possess a broad spectrum of bioactivities, including antibacterial, antifungal, and potential anticancer and neuro-protective effects in vitro. This systematic review presents the current state of CIT research with emphasis on its bioactivity profile.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Citrinina/química , Citrinina/farmacologia , Animais , Citrinina/síntese química , Dano ao DNA/efeitos dos fármacos , Contaminação de Alimentos/análise , Humanos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA