RESUMO
Chronic and excessive glucocorticoid (GC) exposure can cause Cushing's syndrome, resulting in fat accumulation in selected body areas. Particularly in the brown adipose tissue (BAT), GC acts negatively, resulting in whitening of the tissue. We hypothesized that dysregulation of microRNAs by GC could be an additional mechanism to explain its negative actions in BAT. Male Wistar rats were divided into two groups: (1) Control sham and (2) GC group that was administered dexamethasone 6.25 mg/200 µL via osmotic pump implantation over 28 days. After this period, the animals were euthanized and BAT tissue was properly stored. Human fat cells treated with dexamethasone were used to translate the experimental results found in animals to human biology. GC-treated rat BAT presented with large lipid droplets, severely impaired thermogenic activation, and reduced glucose uptake measured by 18F-FDG PET/CT. GC exposure induced a reduction in the mitochondrial OXPHOS system and oxygen consumption. MicroRNA profiling of BAT revealed five top-regulated microRNAs and among them miR-21-5p was the most significantly upregulated in GC-treated rats compared to the control group. Although upregulation of miR-21-5p in the tissue, differentiated primary brown adipocytes from GC-treated rats had decreased miR-21-5p levels compared to the control group. To translate these results to the clinic, human brown adipocytes were treated with dexamethasone and miR-21-5p inhibitor. In human brown cells, inhibition of miR-21-5p increased brown adipocyte differentiation and prevented GC-induced glucose uptake, resulting in a lower glycolysis rate. In conclusion, high-dose GC therapy significantly impacts brown adipose tissue function, with a notable association between glucose uptake and miR-21-5p.
Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Dexametasona , Glucocorticoides , MicroRNAs , Ratos Wistar , Termogênese , Animais , Humanos , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Glucocorticoides/farmacologia , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Dexametasona/farmacologia , Termogênese/efeitos dos fármacos , Ratos , Glucose/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacosRESUMO
Despite evidence of the beneficial effects of cannabidiol (CBD) in animal models of cocaine use disorder (CUD), CBD neuronal mechanisms remain poorly understood. This study investigated the effects of CBD treatment on brain glucose metabolism, in a CUD animal model, using [18F]FDG positron emission tomography (PET). Male C57Bl/6 mice were injected with cocaine (20 mg/kg, i.p.) every other day for 9 days, followed by 8 days of CBD administration (30 mg/kg, i.p.). After 48 h, animals were challenged with cocaine. Control animals received saline/vehicle. [18F]FDG PET was performed at four time points: baseline, last day of sensitization, last day of withdrawal/CBD treatment, and challenge. Subsequently, the animals were euthanized and immunohistochemistry was performed on the hippocampus and amygdala to assess the CB1 receptors, neuronal nuclear protein, microglia (Iba1), and astrocytes (GFAP). Results showed that cocaine administration increased [18F]FDG uptake following sensitization. CBD treatment also increased [18F]FDG uptake in both saline and cocaine groups. However, animals that were sensitized and challenged with cocaine, and those receiving only an acute cocaine injection during the challenge phase, did not exhibit increased [18F]FDG uptake when treated with CBD. Furthermore, CBD induced modifications in the integrated density of NeuN, Iba, GFAP, and CB1R in the hippocampus and amygdala. This is the first study addressing the impact of CBD on brain glucose metabolism in a preclinical model of CUD using PET. Our findings suggest that CBD disrupts cocaine-induced changes in brain energy consumption and activity, which might be correlated with alterations in neuronal and glial function.
Assuntos
Canabidiol , Cocaína , Camundongos , Animais , Masculino , Canabidiol/farmacologia , Canabidiol/metabolismo , Glucose/metabolismo , Fluordesoxiglucose F18/metabolismo , Encéfalo/metabolismo , Cocaína/farmacologia , Camundongos Endogâmicos C57BLRESUMO
Breast cancer remains a pressing public health issue primarily affecting women. Recent research has spotlighted bioactive peptides derived from laminin-111, implicated in breast tumor development. Remarkably, the sequences IKVAV, YIGSR, and KAFDITYVRLKF from the α1, ß1, and γ1 chains, respectively, have garnered significant attention. This study aims to assess the potential of these radiolabeled peptides as targeting agents for breast cancer. The three peptides were synthesized using the Fmoc strategy, purified via reversed-phase high-performance liquid chromatography (RP-HPLC), and characterized through mass spectrometry. Iodine-131 (131I) radiolabeling was performed using the chloramine T method, exhibiting high radiochemical yield and stability for [131I]I-YIKVAV and [131I]I-YIGSR. Conversely, [131I]I-KAFDITYVRLKF demonstrated low radiochemical yield and stability and was excluded from the biological studies. The lipophilicity of the compounds ranged from - 2.12 to - 1.10. Serum protein binding assay for [131I]I-YIKVAV and [131I]I-YIGSR reached â 48% and â 25%, respectively. Affinity for breast cancer cells was evaluated using MDA-MB-231 and MCF-7 tumor cell lines, indicating the affinity of the radiopeptides with these tumor cells. Ex vivo biodistribution profiles of the radiopeptides were assessed in the MDA-MB-231 breast tumor animal model, revealing tumor tissue accumulation, supported by a high tumor-to-contralateral muscle ratio and autoradiography. These results signify the effective penetration of YIKVAV and YIGSR into tumor tissue. Therefore, the synthesized α1 and ß1 peptide fragments exhibit favorable characteristics as potential breast cancer-targeting agents, promising future exploration as radiopharmaceuticals for breast cancer.
Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Estudos Prospectivos , Distribuição Tecidual , Peptídeos/farmacologia , LamininaRESUMO
Myelin is the protective sheath wrapped around axons, consisting of a phospholipid bilayer with water between the wraps. The measurement of damage to the myelin sheaths, the evaluation of the efficacy of therapies aiming to promote remyelination and monitoring the degree of brain maturation in children all require non-invasive quantitative myelin imaging methods. To date, various myelin imaging techniques have been developed. Five different MRI approaches can be distinguished based on their biophysical principles: (i) imaging of the water between the lipid bilayers directly (e.g. myelin water imaging); (ii) imaging the non-aqueous protons of the phospholipid bilayer directly with ultra-short echo-time techniques; (iii) indirect imaging of the macromolecular content (e.g. magnetization transfer; inhomogeneous magnetization transfer); (iv) mapping of the effects of the myelin sheath's magnetic susceptibility on the MRI signal (e.g. quantitative susceptibility mapping); and (v) mapping of the effects of the myelin sheath on water diffusion. Myelin imaging with PET uses radioactive molecules with high affinity to specific myelin components, in particular myelin basic protein. This review aims to give an overview of the various myelin imaging techniques, their biophysical principles, image acquisition, data analysis and their validation status.
Assuntos
Doenças Desmielinizantes , Bainha de Mielina , Criança , Humanos , Bainha de Mielina/metabolismo , Doenças Desmielinizantes/metabolismo , Imageamento por Ressonância Magnética/métodos , Axônios , Tomografia por Emissão de Pósitrons , EncéfaloRESUMO
We verified if cocaine-induced peripheral activation might disrupt [18 F]FDG brain uptake after a cocaine challenge and suggested an optimal protocol to measure cocaine-induced brain metabolic alterations in mice. C57Bl/6 male mice were injected with [18 F]FDG and randomly separated into three groups. Groups 1 and 2 were kept conscious after [18 F]FDG administration and after 5 min received saline or cocaine (20 mg/kg). The animals in group 1 (n = 5) were then evaluated in the open field for 30 min and those from group 2 (n = 6) were kept alone in a home cage for the same period. Forty-five minutes after [18 F]FDG administration, images were acquired for 30 min. Group 3 (n = 6) was kept anesthetized and image acquisition started immediately after tracer injection, for 75 min. Saline (Day 1) or cocaine (Day 2) was injected 5 min after starting acquisition. Another set of animals (n = 5) were treated with cocaine every other day for 10 days or saline (n = 6) and were scanned with the dynamic protocol to verify its efficacy. [18 F]FDG uptake increased after cocaine administration when compared to baseline only in animals kept under anesthesia. No brain effect of cocaine was observed in animals submitted to the open field or kept in the home cage. The use of anesthesia is essential to visualize cocaine-induced changes in brain metabolism by [18 F]FDG PET, providing an interesting preclinical approach to investigate naïve subjects and enabling a bidirectional translational science approach for better understanding of cocaine use disorder.
Assuntos
Cocaína , Fluordesoxiglucose F18 , Animais , Cocaína/farmacologia , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons , Compostos RadiofarmacêuticosRESUMO
PURPOSE: Neuropathological studies have demonstrated distinct profiles of microglia activation and myelin injury among different multiple sclerosis (MS) phenotypes and disability stages. PET imaging using specific tracers may uncover the in vivo molecular pathology and broaden the understanding of the disease heterogeneity. METHODS: We used the 18-kDa translocator protein (TSPO) tracer (R)-[11C]PK11195 and [11C]PIB PET images acquired in a hybrid PET/MR 3 T system to characterize, respectively, the profile of innate immune cells and myelin content in 47 patients with MS compared to 18 healthy controls (HC). For the volume of interest (VOI)-based analysis of the dynamic data, (R)-[11C]PK11195 distribution volume (VT) was determined for each subject using a metabolite-corrected arterial plasma input function while [11C]PIB distribution volume ratio (DVR) was estimated using a reference region extracted by a supervised clustering algorithm. A voxel-based analysis was also performed using Statistical Parametric Mapping. Functional disability was evaluated by the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite (MSFC), and Symbol Digit Modality Test (SDMT). RESULTS: In the VOI-based analysis, [11C]PIB DVR differed between patients and HC in the corpus callosum (P = 0.019) while no differences in (R)-[11C]PK11195 VT were observed in patients relative to HC. Furthermore, no correlations or associations were observed between both tracers within the VOI analyzed. In the voxel-based analysis, high (R)-[11C]PK11195 uptake was observed diffusively in the white matter (WM) when comparing the progressive phenotype and HC, and lower [11C]PIB uptake was observed in certain WM regions when comparing the relapsing-remitting phenotype and HC. None of the tracers were able to differentiate phenotypes at voxel or VOI level in our cohort. Linear regression models adjusted for age, sex, and phenotype demonstrated that higher EDSS was associated with an increased (R)-[11C]PK11195 VT and lower [11C]PIB DVR in corpus callosum (P = 0.001; P = 0.023), caudate (P = 0.015; P = 0.008), and total T2 lesion (P = 0.007; P = 0.012), while better cognitive scores in SDMT were associated with higher [11C]PIB DVR in the corpus callosum (P = 0.001), and lower (R)-[11C]PK11195 VT (P = 0.013). CONCLUSIONS: Widespread innate immune cells profile and marked loss of myelin in T2 lesions and regions close to the ventricles may occur independently and are associated with disability, in both WM and GM structures.
Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/metabolismo , Bainha de Mielina/patologia , Tomografia Computadorizada por Raios X , Tomografia por Emissão de Pósitrons/métodos , Imunidade Inata , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo , Receptores de GABA/metabolismoRESUMO
An early and persistent sign of Alzheimer's disease (AD) is glucose hypometabolism, which can be evaluated by positron emission tomography (PET) with 18F-2-fluoro-2-deoxy-D-glucose ([18F]FDG). Cannabidiol has demonstrated neuroprotective and anti-inflammatory properties but has not been evaluated by PET imaging in an AD model. Intracerebroventricular (icv) injection of streptozotocin (STZ) is a validated model for hypometabolism observed in AD. This proof-of-concept study evaluated the effect of cannabidiol treatment in the brain glucose metabolism of an icv-STZ AD model by PET imaging. Wistar male rats received 3 mg/kg of STZ and [18F]FDG PET images were acquired before and 7 days after STZ injection. Animals were treated with intraperitoneal cannabidiol (20 mg/kg-STZ-cannabidiol) or saline (STZ-saline) for one week. Novel object recognition was performed to evaluate short-term and long-term memory. [18F]FDG uptake in the whole brain was significantly lower in the STZ-saline group. Voxel-based analysis revealed a hypometabolism cluster close to the lateral ventricle, which was smaller in STZ-cannabidiol animals. The brain regions with more evident hypometabolism were the striatum, motor cortex, hippocampus, and thalamus, which was not observed in STZ-cannabidiol animals. In addition, STZ-cannabidiol animals revealed no changes in memory index. Thus, this study suggests that cannabidiol could be an early treatment for the neurodegenerative process observed in AD.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Canabidiol/administração & dosagem , Glucose/metabolismo , Estreptozocina/efeitos adversos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/diagnóstico por imagem , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Canabidiol/farmacologia , Modelos Animais de Doenças , Fluordesoxiglucose F18/administração & dosagem , Injeções Intraperitoneais , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Tomografia por Emissão de Pósitrons , Estudo de Prova de Conceito , Ratos , Ratos WistarRESUMO
Down Syndrome (DS) is considered the most frequent form of Intellectual Disability, with important expressions of cognitive decline and early dementia. Studies on potential treatments for dementia in this population are still scarce. Thus, the current review aims to synthesize the different pharmacological approaches that already exist in the literature, which focus on improving the set of symptoms related to dementia in people with DS. A total of six studies were included, evaluating the application of supplemental antioxidant therapies, such as alpha-tocopherol; the use of acetylcholinesterase inhibitor drugs, such as donepezil; N-methyl-d-aspartate (NMDA) receptor antagonists, such as memantine; and the use of vitamin E and a fast-acting intranasal insulin. Two studies observed important positive changes related to some general functions in people with DS (referring to donepezil). In the majority of studies, the use of pharmacological therapies did not lead to improvement in the set of symptoms related to dementia, such as memory and general functionality, in the population with DS.
Assuntos
Demência , Síndrome de Down , Acetilcolinesterase , Inibidores da Colinesterase/uso terapêutico , Demência/complicações , Demência/tratamento farmacológico , Donepezila/uso terapêutico , Síndrome de Down/complicações , Humanos , Memantina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores de N-Metil-D-Aspartato/antagonistas & inibidoresRESUMO
Changes in hippocampal subfield volumes (HSV) along the Alzheimer's disease (AD) continuum have been scarcely investigated to date in elderly subjects classified based on the presence of ß-amyloid aggregation and signs of neurodegeneration. We classified patients (either sex) with mild dementia compatible with AD (n = 35) or amnestic mild cognitive impairment (n = 39), and cognitively unimpaired subjects (either sex; n = 26) using [11 C]PIB-PET to assess ß-amyloid aggregation (A+) and [18 F]FDG-PET to account for neurodegeneration ((N)+). Magnetic resonance imaging-based automated methods were used for HSV and white matter hyperintensity (WMH) measurements. Significant HSV reductions were found in A+(N)+ subjects in the presubiculum/subiculum complex and molecular layer, related to worse memory performance. In both the A+(N)+ and A+(N)- categories, subicular volumes were inversely correlated with the degree of Aß deposition. The A-(N)+ subgroup showed reduced HSV relative to the A-(N)- subgroup also in the subiculum/presubiculum. Combining all (N)- subjects, HSV were lower in subjects presenting significant cognitive decline irrespective of A+/A- classification (controlling for WMH load); these between-group differences were detected again in the presubiculum, but also involved the CA4 and granular layer. These findings demonstrate that differential HSV reductions are detectable both in (N)+ and (N)- categories along the AD continuum, and are directly related to the severity of cognitive deficits. HSV reductions are larger both in A+(N)+ and A+(N)- subjects in direct proportion to the degree of Aß deposition. The meaningful HSV reductions detected in the A-(N)+ subgroup highlights the strength of biomarker-based classifications outside of the classical AD continuum.
Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Disfunção Cognitiva/patologia , Hipocampo/patologia , Neuroimagem , Tomografia por Emissão de Pósitrons , Agregados Proteicos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Compostos de Anilina , Atrofia , Biomarcadores , Radioisótopos de Carbono , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Feminino , Hipocampo/química , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Compostos Radiofarmacêuticos , Tiazóis , Substância Branca/diagnóstico por imagemRESUMO
The short-term memory binding (STMB) test involves the ability to hold in memory the integration between surface features, such as shapes and colours. The STMB test has been used to detect Alzheimer's disease (AD) at different stages, from preclinical to dementia, showing promising results. The objective of the present study was to verify whether the STMB test could differentiate patients with distinct biomarker profiles in the AD continuum. The sample comprised 18 cognitively unimpaired (CU) participants, 30 mild cognitive impairment (MCI) and 23 AD patients. All participants underwent positron emission tomography (PET) with Pittsburgh compound-B labelled with carbon-11 ([11C]PIB) assessing amyloid beta (Aß) aggregation (A) and 18fluorine-fluorodeoxyglucose ([18F]FDG)-PET assessing neurodegeneration (N) (A-N- [n = 35]); A+N- [n = 11]; A+ N+ [n = 19]). Participants who were negative and positive for amyloid deposition were compared in the absence (A-N- vs. A+N-) of neurodegeneration. When compared with the RAVLT and SKT memory tests, the STMB was the only cognitive task that differentiated these groups, predicting the group outcome in logistic regression analyses. The STMB test showed to be sensitive to the signs of AD pathology and may represent a cognitive marker within the AD continuum.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Memória de Curto Prazo , Tomografia por Emissão de PósitronsRESUMO
In the last paragraph of the subsession "Recruitment of the study population and clinical Evaluation" (Material and methods session).
RESUMO
PURPOSE: [18F]FDG-PET and [11C]PIB-PET are validated as neurodegeneration and amyloid biomarkers of Alzheimer's disease (AD). We used a PET staging system based on the 2018 NIA-AA research framework to compare the proportion of amyloid positivity (A+) and hypometabolism ((N)+) in cases of mild probable AD, amnestic mild cognitive impairment (aMCI), and healthy controls, incorporating an additional classification of abnormal [18F]FDG-PET patterns and investigating the co-occurrence of such with A+, exploring [18F]FDG-PET to generate hypotheses in cases presenting with clinical-biomarker "mismatches." METHODS: Elderly individuals (N = 108) clinically classified as controls (N = 27), aMCI (N = 43) or mild probable AD (N = 38) were included. Authors assessed their A(N) profiles and classified [18F]FDG-PET neurodegenerative patterns as typical or non-typical of AD, performing re-assessments of images whenever clinical classification was in disagreement with the PET staging (clinical-biomarker "mismatches"). We also investigated associations between "mismatches" and sociodemographic and educational characteristics. RESULTS: AD presented with higher rates of A+ and (N)+. There was also a higher proportion of A+ and (N)+ individuals in the aMCI group in comparison to controls, however without statistical significance regarding the A staging. There was a significant association between amyloid positivity and AD (N)+ hypometabolic patterns typical of AD. Non-AD (N)+ hypometabolism was seen in all A- (N)+ cases in the mild probable AD and control groups and [18F]FDG-PET patterns classified such individuals as "SNAP" and one as probable frontotemporal lobar degeneration. All A- (N)- cases in the probable AD group had less than 4 years of formal education and lower socioeconomic status (SES). CONCLUSION: The PET-based staging system unveiled significant A(N) differences between AD and the other groups, whereas aMCI and controls had different (N) staging, explaining the cognitive impairment in aMCI. [18F]FDG-PET could be used beyond simple (N) staging, since it provided alternative hypotheses to cases with clinical-biomarker "mismatches." An AD hypometabolic pattern correlated with amyloid positivity. Low education and SES were related to dementia in the absence of biomarker changes.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Fluordesoxiglucose F18 , Humanos , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios XRESUMO
Circulating dipeptidyl peptidase IV (DPPIV) activity correlates with cardiac dysfunction in humans and experimental heart failure (HF) models. Similarly, inflammatory markers are associated with poorer outcomes in HF patients. However, the contributions of DPPIV to inflammation in HF remain elusive. Therefore, this study aimed to investigate whether the cardioprotective effects of DPPIV inhibition after myocardial injury are accompanied by reduced cardiac inflammation, whether circulating DPPIV activity correlates with the levels of systemic inflammatory markers in HF patients, and whether leukocytes and/or splenocytes may be one of the sources of circulating DPPIV in HF. Experimental HF was induced in male Wistar rats by left ventricular myocardial injury after radiofrequency catheter ablation. The rats were divided into three groups: sham, HF, and HF + DPPIV inhibitor (sitagliptin). Six weeks after surgery, cardiac function, perfusion and inflammatory status were evaluated. Sitagliptin treatment improved cardiac function and perfusion, reduced macrophage infiltration, and diminished the levels of inflammatory biomarkers including TNF-α, IL-1ß, and CCL2. In HF patients, serum DPPIV activity correlated with CCL2, suggesting that leukocytes may be the source of circulating DPPIV in HF. Unexpectedly, DPPIV release was higher in splenocytes from HF rats and similar in HF circulating mononuclear cells compared with those from sham, suggesting an organ-specific modulation of DPPIV in HF. Collectively, our data provide new evidence that the cardioprotective effects of DPPIV inhibition in HF may be due to suppression of inflammatory cytokines. Moreover, they suggest that a vicious circle between DPPIV and inflammation may contribute to HF development and progression.
Assuntos
Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Coração/efeitos dos fármacos , Inflamação/tratamento farmacológico , Fosfato de Sitagliptina/uso terapêutico , Animais , Biomarcadores/sangue , Quimiocina CCL2/sangue , Inibidores da Dipeptidil Peptidase IV/farmacologia , Coração/fisiopatologia , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/fisiopatologia , Inflamação/sangue , Inflamação/fisiopatologia , Interleucina-1beta/sangue , Macrófagos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Fosfato de Sitagliptina/farmacologia , Fator de Necrose Tumoral alfa/sangueRESUMO
Multiple Sclerosis (MS) is a neurodegenerative disease characterized by demyelinated lesions. PET imaging using specific myelin radioligands might solve the lack of a specific imaging tool for diagnosing and monitoring demyelination and remyelination in MS patients. In recent years, a few tracers have been developed for in vivo PET imaging of myelin, but they have not been fully evaluated yet. In this study, we compared [(11)C]CIC and [(11)C]MeDAS as PET tracers for monitoring demyelination and remyelination in cuprizone-fed mice. The ex vivo biodistribution of [(11)C]CIC showed decreased tracer uptake in mice fed with 0.2% cuprizone diet for 5 weeks, as compared to control mice. However, tracer uptake did not increase again after normal diet was restored for 5 weeks (remyelination). Surprisingly, in vivo PET imaging with [(11)C]CIC in cuprizone-fed mice revealed a significant reduction in whole brain tracer uptake after 5 weeks of remyelination. No correlation between ex vivo biodistribution and in vivo imaging data was found for [(11)C]CIC (r(2)=0.15, p=0.11). However, a strong correlation was found for [(11)C]MeDAS (r(2)=0.88, p<0.0001). [(11)C]MeDAS ex vivo biodistribution revealed significant decreased brain uptake in the demyelination group, as compared to controls and increased the tracer uptake after 5 weeks of remyelination. [(11)C]MeDAS images showed a low background signal and clear uptake in the brain white matter and spinal cord. Taken together, the results of this comparative study between [(11)C]CIC and [(11)C]MeDAS clearly show that [(11)C]MeDAS is the preferred PET tracer to monitor myelin changes in the brain and spinal cord in vivo.
Assuntos
Radioisótopos de Carbono/farmacologia , Doenças Desmielinizantes/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacologia , Animais , Quelantes/toxicidade , Cuprizona/toxicidade , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Injection of lysolecithin in the central nervous system results in demyelination accompanied by local activation of microglia and recruitment of monocytes. Positron-emission tomography (PET) imaging, using specific tracers, may be an adequate technique to monitor these events in vivo and therefore may become a tool for monitoring disease progression in multiple sclerosis (MS) patients. OBJECTIVES: The objective of this paper is to evaluate the potential of PET imaging in monitoring local lesions, using [(11)C]MeDAS, [(11)C]PK11195 and [(18)F]FDG as PET tracers for myelin density, microglia activation and glucose metabolism, respectively. METHODS: Sprague-Dawley rats were stereotactically injected with either 1% lysolecithin or saline in the corpus callosum and striatum of the right brain hemisphere. PET imaging was performed three days, one week and four weeks after injection. Animals were terminated after PET imaging and the brains were explanted for (immuno)histochemical analysis. RESULTS: PET imaging was able to detect local demyelination induced by lysolecithin in the corpus callosum and striatum with [(11)C]MeDAS and concomitant microglia activation and monocyte recruitment with [(11)C]PK11195. [(18)F]FDG imaging demonstrated that glucose metabolism was maintained in the demyelinated lesions. CONCLUSION: PET imaging with multiple tracers allows simultaneous in vivo monitoring of myelin density, neuroinflammation and brain metabolism in small MS-like lesions, indicating its potential to monitor disease progression in MS patients.
Assuntos
Glucose/metabolismo , Lisofosfatidilcolinas/metabolismo , Esclerose Múltipla/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Masculino , Microglia/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Tomografia por Emissão de Pósitrons/métodos , Radiografia , Ratos Sprague-DawleyRESUMO
This study aims to evaluate non-invasive PET quantification methods for (R)-[11C]PK11195 uptake measurement in multiple sclerosis (MS) patients and healthy controls (HC) in comparison with arterial input function (AIF) using dynamic (R)-[11C]PK11195 PET and magnetic resonance images. The total volume of distribution (VT) and distribution volume ratio (DVR) were measured in the gray matter, white matter, caudate nucleus, putamen, pallidum, thalamus, cerebellum, and brainstem using AIF, the image-derived input function (IDIF) from the carotid arteries, and pseudo-reference regions from supervised clustering analysis (SVCA). Uptake differences between MS and HC groups were tested using statistical tests adjusted for age and sex, and correlations between the results from the different quantification methods were also analyzed. Significant DVR differences were observed in the gray matter, white matter, putamen, pallidum, thalamus, and brainstem of MS patients when compared to the HC group. Also, strong correlations were found in DVR values between non-invasive methods and AIF (0.928 for IDIF and 0.975 for SVCA, p < 0.0001). On the other hand, (R)-[11C]PK11195 uptake could not be differentiated between MS patients and HC using VT values, and a weak correlation (0.356, p < 0.0001) was found between VTAIF and VTIDIF. Our study shows that the best alternative for AIF is using SVCA for reference region modeling, in addition to a cautious and appropriate methodology.
RESUMO
Background: Multiple sclerosis (MS) has two main phenotypes: relapse-remitting MS (RRMS) and progressive MS (PMS), distinguished by disability profiles and treatment response. Differentiating them using conventional MRI is challenging. Objective: This study explores the use of scaled subprofile modelling using principal component analysis (SSM/PCA) on MRI data to distinguish between MS phenotypes. Methods: MRI scans were performed on patients with RRMS (n = 30) and patients with PMS (n = 20), using the standard sequences T1w, T2w, T2w-FLAIR, and the myelin-sensitive sequences magnetisation transfer (MT) ratio (MTR), quantitative MT (qMT), inhomogeneous MT ratio (ihMTR), and quantitative inhomogeneous MT (qihMT). Results: SSM/PCA analysis of qihMT images best differentiated PMS from RRMS, with the highest specificity (87%) and positive predictive value (PPV) (83%), but a lower sensitivity (67%) and negative predictive value (NPV) (72%). Conversely, T1w data analysis showed the highest sensitivity (93%) and NPV (89%), with a lower PPV (67%) and specificity (53%). Phenotype classification agreement between T1w and qihMT was observed in 57% of patients. In the subset with concordant classifications, the sensitivity, specificity, PPV, and NPV were 100%, 88%, 90%, and 100%, respectively. Conclusions: SSM/PCA on MRI data revealed distinctive patterns for MS phenotypes. Optimal discrimination occurred with qihMT and T1w sequences, with qihMT identifying PMS and T1w identifying RRMS. When qihMT and T1w analyses align, MS phenotype prediction improves.
RESUMO
Background: Recent advancements in nanomedicine and nanotechnology have expanded the scope of multifunctional nanostructures, offering innovative solutions for targeted drug delivery and diagnostic agents in oncology and nuclear medicine. Nanoparticles, particularly those derived from natural sources, hold immense potential in overcoming biological barriers to enhance therapeutic efficacy and diagnostic accuracy. Papain, a natural plant protease derived from Carica papaya, emerges as a promising candidate for green nanotechnology-based applications due to its diverse medicinal properties, including anticancer properties. Purpose: This study presents a novel approach in nanomedicine and oncology, exploring the potential of green nanotechnology by developing and evaluating technetium-99m radiolabeled papain nanoparticles (99mTc-P-NPs) for imaging breast tumors. The study aimed to investigate the efficacy and specificity of these nanoparticles in breast cancer models through preclinical in vitro and in vivo assessments. Methods: Papain nanoparticles (P-NPs) were synthesized using a radiation-driven method and underwent thorough characterization, including size, surface morphology, surface charge, and cytotoxicity assessment. Subsequently, P-NPs were radiolabeled with technetium-99m (99mTc), and in vitro and in vivo studies were conducted to evaluate cellular uptake at tumor sites, along with biodistribution, SPECT/CT imaging, autoradiography, and immunohistochemistry assays, using breast cancer models. Results: The synthesized P-NPs exhibited a size mean diameter of 9.3 ± 1.9 nm and a spherical shape. The in vitro cytotoxic activity of native papain and P-NPs showed low cytotoxicity in HUVEC, MDA-MB231, and 4T1 cells. The achieved radiochemical yield was 94.2 ± 3.1% that were sufficiently stable (≥90%) for 6 h. The tumor uptake achieved in the 4T1 model was 2.49 ± 0.32% IA/g at 2 h and 1.51 ± 0.20% IA/g at 6 h. In the spontaneous breast cancer model, 1.19 ± 0.20% IA/g at 2 h and 0.86 ± 0.31% IA/g at 6 h. SPECT/CT imaging has shown substantial tumor uptake of the new nanoradiopharmaceutical and clear tumor visualization. 99mTc-P-NPs exhibited a high affinity to tumoral cells confirmed by ex vivo autoradiography and immunohistochemistry assays. Conclusion: The findings underscore the potential of green nanotechnology-driven papain nanoparticles as promising agents for molecular imaging of breast and other tumors through SPECT/CT imaging. The results represent a substantial step forward in the application of papain nanoparticles as carriers of diagnostic and therapeutic radionuclides to deliver diagnostic/therapeutic payloads site-specifically to tumor sites for the development of a new generation of nanoradiopharmaceuticals.
RESUMO
Objectives: Bisphosphonates (BFs) show clinical effectiveness in managing osteoporosis and bone metastases but pose risks of bisphosphonate-related jaw osteonecrosis (BRONJ). With no established gold standard for BRONJ treatment, our focus is on symptom severity reduction. We aimed to assess the preventive effects of bioactive glass and/or pericardial membrane in a preclinical BRONJ model, evaluating their potential to prevent osteonecrosis and bone loss post-tooth extractions in zoledronic acid (ZA)-treated animals. Methods: Rats, receiving ZA or saline biweekly for four weeks, underwent 1st and 2nd lower left molar extractions. Pericardial membrane alone or with F18 bioglass was applied post-extractions. Microarchitecture analysis and bone loss assessment utilized computerized microtomography (CT) and positron emission tomography (PET) with 18F-FDG and 18F-NaF tracers. Histological analysis evaluated bone injury. Results: Exclusive alveolar bone loss occurred post-extraction in the continuous ZA group, inducing osteonecrosis, osteolysis, osteomyelitis, and abscess formation. Concurrent pericardial membrane with F18 bioglass application prevented these outcomes. Baseline PET/CT scans showed no discernible uptake differences, but post-extraction 18F-FDG tracer imaging revealed heightened glucose metabolism at the extraction site in the ZA-treated group with membrane, contrasting the control group. Conclusion: These findings suggest pericardial membrane with F18 bioglass effectively prevents BRONJ in the preclinical model.
RESUMO
We hypothesized that after synovial injury, collagen V (Col V) expose occult antigens, and Col V autoantibodies develop, indicating the loss of immune tolerance against this molecule, thus leading to damage to mesenchymal-derived cells as well as the extracellular matrix in experimental arthritis. Thus, the present study investigated the effects of oral administration of Col V on the synovium after the development of inflammation in mBSA/CFA-induced arthritis. After fourteen days of intraarticular administration of mBSA, 10 male Lewis rats were orally administered Col V (500 µg/300 µL) diluted in 0.01 N acetic acid (IA-Col V group). The arthritic group (IA group, n = 10) received only intraarticular mBSA. An intra-articular saline injection (20 µL) was given to the control group (CT-Col V, n = 5). IA group presented damaged synovia, the expansion of the extracellular matrix by cellular infiltrate, which was characterized by T and B lymphocytes, and fibroblastic infiltration. In contrast, after Col V oral immunotherapy IA-Col V group showed a significant reduction in synovial inflammation and intense expression of IL-10+ and FoxP3+ cells, in addition to a reduction in Col V and an increase in Col I in the synovia compared to those in the IA group. Furthermore, an increase in IL-10 production was detected after IA-Col V group spleen cell stimulation with Col V in vitro. PET imaging did not differ between the groups. The evaluation of oral treatment with Col V, after mBSA/CFA-induced arthritis in rats, protects against inflammation and reduces synovial tissue damage, through modulation of the synovial matrix, showing an immunotherapeutic potential in inhibiting synovitis.