Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Microbiol ; 99(3): 546-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26462856

RESUMO

Bacteria remodel peptidoglycan structure in response to environmental changes. Many enzymes are involved in peptidoglycan metabolism; however, little is known about their responsiveness in a defined environment or the modes they assist bacteria to adapt to new niches. Here, we focused in peptidoglycan enzymes that intracellular bacterial pathogens use inside eukaryotic cells. We identified a peptidoglycan enzyme induced by Salmonella enterica serovar Typhimurium in fibroblasts and epithelial cells. This enzyme, which shows γ-D-glutamyl-meso-diaminopimelic acid D,L-endopeptidase activity, is also produced by the pathogen in media with limited nutrients and in resting conditions. The enzyme, termed EcgA for endopeptidase responding to cessation of growth', is encoded in a S. Typhimurium genomic island absent in Escherichia coli. EcgA production is strictly dependent on the virulence regulator PhoP in extra- and intracellular environments. Consistent to this regulation, a mutant lacking EcgA is attenuated in the mouse typhoid model. These findings suggest that specialised peptidoglycan enzymes, such as EcgA, might facilitate Salmonella adaptation to the intracellular lifestyle. Moreover, they indicate that readjustment of peptidoglycan metabolism inside the eukaryotic cell is essential for host colonisation.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Peptidoglicano/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/enzimologia , Salmonella typhimurium/patogenicidade , Animais , Proteínas de Bactérias/genética , Endopeptidases/genética , Feminino , Fibroblastos/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Virulência
2.
J Biol Chem ; 290(52): 31090-100, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26468288

RESUMO

The bacterial cell wall is a network of glycan strands cross-linked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination.


Assuntos
Escherichia coli , Peptidoglicano/química , Peptidoglicano/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura
3.
J Am Chem Soc ; 138(29): 9193-204, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27337563

RESUMO

Peptidoglycan is a fundamental structure for most bacteria. It contributes to the cell morphology and provides cell wall integrity against environmental insults. While several studies have reported a significant degree of variability in the chemical composition and organization of peptidoglycan in the domain Bacteria, the real diversity of this polymer is far from fully explored. This work exploits rapid ultraperformance liquid chromatography and multivariate data analysis to uncover peptidoglycan chemical diversity in the Class Alphaproteobacteria, a group of Gram negative bacteria that are highly heterogeneous in terms of metabolism, morphology and life-styles. Indeed, chemometric analyses revealed novel peptidoglycan structures conserved in Acetobacteria: amidation at the α-(l)-carboxyl of meso-diaminopimelic acid and the presence of muropeptides cross-linked by (1-3) l-Ala-d-(meso)-diaminopimelate cross-links. Both structures are growth-controlled modifications that influence sensitivity to Type VI secretion system peptidoglycan endopeptidases and recognition by the Drosophila innate immune system, suggesting relevant roles in the environmental adaptability of these bacteria. Collectively our findings demonstrate the discriminative power of chemometric tools on large cell wall-chromatographic data sets to discover novel peptidoglycan structural properties in bacteria.


Assuntos
Parede Celular/metabolismo , Biologia Computacional , Drosophila melanogaster/imunologia , Imunidade Inata/efeitos dos fármacos , Peptidoglicano/metabolismo , Peptidoglicano/farmacologia , Alphaproteobacteria/química , Alphaproteobacteria/citologia , Animais , Drosophila melanogaster/efeitos dos fármacos , Endopeptidases/metabolismo
4.
EMBO J ; 30(16): 3442-53, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21792174

RESUMO

Production of non-canonical D-amino acids (NCDAAs) in stationary phase promotes remodelling of peptidoglycan (PG), the polymer that comprises the bacterial cell wall. Impairment of NCDAAs production leads to excessive accumulation of PG and hypersensitivity to osmotic shock; however, the mechanistic bases for these phenotypes were not previously determined. Here, we show that incorporation of NCDAAs into PG is a critical means by which NCDAAs control PG abundance and strength. We identified and reconstituted in vitro two (of at least three) distinct processes that mediate NCDAA incorporation. Diverse bacterial phyla incorporate NCDAAs into their cell walls, either through periplasmic editing of the mature PG or via incorporation into PG precursor subunits in the cytosol. Production of NCDAAs in Vibrio cholerae requires the stress response sigma factor RpoS, suggesting that NCDAAs may aid bacteria in responding to varied environmental challenges. The widespread capacity of diverse bacteria, including non-producers, to incorporate NCDAAs suggests that these amino acids may serve as both autocrine- and paracrine-like regulators of chemical and physical properties of the cell wall in microbial communities.


Assuntos
Aminoácidos/metabolismo , Aminoácidos/farmacologia , Parede Celular/metabolismo , Proteínas de Membrana/metabolismo , Peptidoglicano/efeitos dos fármacos , Sequência de Aminoácidos , Aminoácidos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Proteínas de Membrana/genética , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptidoglicano/biossíntese , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Vibrio cholerae/ultraestrutura
5.
Environ Microbiol ; 17(4): 1081-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24762004

RESUMO

Changes in the peptidoglycan (PG) structure of Salmonella enterica are detected in the presence of a sublethal concentration of sodium deoxycholate (DOC): (i) lower proportions of Braun lipoprotein (Lpp)-bound muropeptides; (ii) reduced levels of muropeptides cross-linked by L(meso)-diaminopimelyl-D(meso)-diaminopimelic acid (L-D) peptide bridges (3-3 cross-links). Similar structural changes are found in S. enterica cultures adapted to grow in the presence of a lethal concentration of DOC, suggesting that reduced anchoring of Braun protein to PG and low occurrence of 3-3 cross-links may increase S. enterica resistance to bile. This view is further supported by additional observations: (i) A triple mutant lacking L,D-transpeptidases YbiS, ErfK, and YcfS, which does not contain Lpp anchored to PG, is hyper-resistant to bile; (ii) enhanced 3-3 cross-linking upon overexpression of YnhG transpeptidase causes a decrease in bile resistance. These observations suggest that remodelling of the cell wall may be added to the list of adaptive responses that permit survival of S. enterica in the presence of bile.


Assuntos
Bile/microbiologia , Parede Celular/metabolismo , Ácido Desoxicólico/farmacologia , Peptidoglicano/metabolismo , Salmonella enterica/crescimento & desenvolvimento , Ácido Diaminopimélico/análogos & derivados , Ácido Diaminopimélico/química , Lipoproteínas/metabolismo , Peptídeos/análise , Peptidoglicano/biossíntese , Peptidil Transferases/genética
6.
Proc Natl Acad Sci U S A ; 109(5): 1697-701, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22307633

RESUMO

Elongation of many rod-shaped bacteria occurs by peptidoglycan synthesis at discrete foci along the sidewall of the cells. However, within the Rhizobiales, there are many budding bacteria, in which new cell growth is constrained to a specific region. The phylogeny of the Rhizobiales indicates that this mode of zonal growth may be ancestral. We demonstrate that the rod-shaped bacterium Agrobacterium tumefaciens grows unidirectionally from the new pole generated after cell division and has an atypical peptidoglycan composition. Polar growth occurs under all conditions tested, including when cells are attached to a plant root and under conditions that induce virulence. Finally, we show that polar growth also occurs in the closely related bacteria Sinorhizobium meliloti, Brucella abortus, and Ochrobactrum anthropi. We find that unipolar growth is an ancestral and conserved trait among the Rhizobiales, which includes important mutualists and pathogens of plants and animals.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Rhizobiaceae/crescimento & desenvolvimento , Alphaproteobacteria/classificação , Filogenia , Rhizobiaceae/classificação
7.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 1): 79-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24419381

RESUMO

Broad-spectrum amino-acid racemases (Bsrs) enable bacteria to generate noncanonical D-amino acids, the roles of which in microbial physiology, including the modulation of cell-wall structure and the dissolution of biofilms, are just beginning to be appreciated. Here, extensive crystallographic, mutational, biochemical and bioinformatic studies were used to define the molecular features of the racemase BsrV that enable this enzyme to accommodate more diverse substrates than the related PLP-dependent alanine racemases. Conserved residues were identified that distinguish BsrV and a newly defined family of broad-spectrum racemases from alanine racemases, and these residues were found to be key mediators of the multispecificity of BrsV. Finally, the structural analysis of an additional Bsr that was identified in the bioinformatic analysis confirmed that the distinguishing features of BrsV are conserved among Bsr family members.


Assuntos
Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Vibrio cholerae/enzimologia , Alanina Racemase/química , Alanina Racemase/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Especificidade por Substrato , Vibrio cholerae/química
8.
Mol Microbiol ; 89(1): 1-13, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23679048

RESUMO

The peptidoglycan (PG) cell wall is a unique macromolecule responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. A quantitative understanding of the relationships between PG architecture, morphogenesis, immune system activation and pathogenesis can provide molecular-scale insights into the function of proteins involved in cell wall synthesis and cell growth. High-performance liquid chromatography (HPLC) has played an important role in our understanding of the structural and chemical complexity of the cell wall by providing an analytical method to quantify differences in chemical composition. Here, we present a primer on the basic chemical features of wall structure that can be revealed through HPLC, along with a description of the applications of HPLC PG analyses for interpreting the effects of genetic and chemical perturbations to a variety of bacterial species in different environments. We describe the physical consequences of different PG compositions on cell shape, and review complementary experimental and computational methodologies for PG analysis. Finally, we present a partial list of future targets of development for HPLC and related techniques.


Assuntos
Bactérias/química , Parede Celular/química , Cromatografia Líquida de Alta Pressão , Peptidoglicano/análise
9.
J Bacteriol ; 195(19): 4415-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23893115

RESUMO

Penicillin binding proteins (PBPs) are responsible for synthesizing and modifying the bacterial cell wall, and in Escherichia coli the loss of several nonessential low-molecular-weight PBPs gives rise to abnormalities in cell shape and division. To determine whether these proteins help connect the flagellar basal body to the peptidoglycan wall, we surveyed a set of PBP mutants and found that motility in an agar migration assay was compromised by the simultaneous absence of four enzymes: PBP4, PBP5, PBP7, and AmpH. A wild-type copy of any one of these restored migration, and complementation depended on the integrity of the PBP active-site serine. However, the migration defect was caused by the absence of flagella instead of improper flagellar assembly. Migration was restored if the flhDC genes were overexpressed or if the rcsB or cpxR genes were deleted. Thus, migration was inhibited because the Rcs and Cpx stress response systems were induced in the absence of these four specific PBPs. Furthermore, in this situation Rcs induction depended on the presence of CpxR. The results imply that small changes in peptidoglycan structure are sufficient to activate these stress responses, suggesting that a specific cell wall fragment may be the signal being sensed. The fact that four PBPs must be inactivated may explain why large perturbations to the envelope are required to induce stress responses.


Assuntos
Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Ligação às Penicilinas/metabolismo , Estresse Fisiológico/fisiologia , Parede Celular , Escherichia coli/genética , Flagelos/genética , Flagelos/fisiologia , Teste de Complementação Genética , Movimento , Mutação , Proteínas de Ligação às Penicilinas/genética
10.
Mol Microbiol ; 84(2): 203-24, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22390731

RESUMO

Escherichia coli cells lacking low-molecular-weight penicillin-binding proteins (LMW PBPs) exhibit morphological alterations that also appear when the septal protein FtsZ is mislocalized, suggesting that peptidoglycan modification and division may work together to produce cell shape. We found that in strains lacking PBP5 and other LMW PBPs, higher FtsZ concentrations increased the frequency of branched cells and incorrectly oriented Z rings by 10- to 15-fold. Invagination of these rings produced improperly oriented septa, which in turn gave rise to asymmetric cell poles that eventually elongated into branches. Branches always originated from the remnants of abnormal septation events, cementing the relationship between aberrant cell division and branch formation. In the absence of PBP5, PBP6 and DacD localized to nascent septa, suggesting that these PBPs can partially substitute for the loss of PBP5. We propose that branching begins when mislocalized FtsZ triggers the insertion of inert peptidoglycan at unusual positions during cell division. Only later, after normal cell wall elongation separates the patches, do branches become visible. Thus, a relationship between the LMW PBPs and cytoplasmic FtsZ ultimately affects cell division and overall shape.


Assuntos
Divisão Celular Assimétrica , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Ligação às Penicilinas/metabolismo , Escherichia coli/fisiologia , Modelos Biológicos
11.
Extremophiles ; 16(3): 485-95, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22527042

RESUMO

Regular surface protein layers (S-layers) from most Gram-positive bacteria and from the ancestral bacterium Thermus thermophilus attach to pyruvylated polysaccharides (SCWP) covalently bound to the peptidoglycan through their SLH domain. However, it is not known whether the synthesis of SCWP and S-layer is coordinated enough as to follow a similar pattern of incorporation to the cell wall during growth. In this work we analyse the localization of newly synthesized SCWP on the cell wall of T. thermophilus by immunoelectron microscopy. For this, we obtained mutants with a reduced amount of pyruvylated SCWP through mutation of the csaB gene encoding the SCWP-pyruvylating activity, and its upstream gene csaA, a putative sugar transporter. We hypothesized that CsaA would be required for the synthesis of the SCWP. However, we found that csaA mutants showed only a minor decrease in the amount of SCWP immunodetected on the cell walls in comparison with csaB mutants, revealing its irrelevance in the process. Complementation experiments of csaB mutants with CsaB expressed from inducible promoters revealed that newly synthesized SCWP was homogeneously distributed along the cell wall. Fusions with thermostable fluorescent protein revealed that CsaB was distributed also in homogeneous pattern associated with the membrane. These data support that synthesis of SCWP takes place in disperse and homogeneous form all over the cell surface, in contrast to the zonal incorporation at the cell centre recently demonstrated for SlpA.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Polissacarídeos Bacterianos/biossíntese , Thermus thermophilus/metabolismo , Proteínas de Bactérias/genética , Parede Celular/genética , Glicoproteínas de Membrana/genética , Mutação , Peptidoglicano/genética , Peptidoglicano/metabolismo , Polissacarídeos Bacterianos/genética , Thermus thermophilus/genética
12.
Cell Mol Life Sci ; 68(5): 817-31, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21161322

RESUMO

The D-enantiomers of amino acids have been thought to have relatively minor functions in biological processes. While L-amino acids clearly predominate in nature, D-amino acids are sometimes found in proteins that are not synthesized by ribosomes, and D-Ala and D-Glu are routinely found in the peptidoglycan cell wall of bacteria. Here, we review recent findings showing that D-amino acids have previously unappreciated regulatory roles in the bacterial kingdom. Many diverse bacterial phyla synthesize and release D-amino acids, including D-Met and D-Leu, which were not previously known to be made. These noncanonical D-amino acids regulate cell wall remodeling in stationary phase and cause biofilm dispersal in aging bacterial communities. Elucidating the mechanisms by which D-amino acids govern cell wall remodeling and biofilm disassembly will undoubtedly reveal new paradigms for understanding how extracytoplasmic processes are regulated as well as lead to development of novel therapeutics.


Assuntos
Aminoácidos/fisiologia , Bactérias/metabolismo , Isomerases de Aminoácido/fisiologia , Aminoácidos/biossíntese , Aminoácidos/química , Biofilmes , Parede Celular/metabolismo , Modelos Biológicos , Peptidoglicano/química , Esporos Bacterianos/metabolismo
13.
Angew Chem Int Ed Engl ; 51(50): 12519-23, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23055266

RESUMO

Tracking a bug's life: Peptidoglycan (PG) of diverse bacteria is labeled by exploiting the tolerance of cells for incorporating different non-natural D-amino acids. These nontoxic D-amino acids preferably label the sites of active PG synthesis, thereby enabling fine spatiotemporal tracking of cell-wall dynamics in phylogenetically and morphologically diverse bacteria. HCC = 7-hydroxycoumarin, NBD = 7-nitrobenzofurazan, TAMRA = carboxytetramethylrhodamine.


Assuntos
Aminoácidos/química , Bactérias/metabolismo , Corantes Fluorescentes/química , Peptidoglicano/biossíntese , Agrobacterium tumefaciens/metabolismo , Bacillus subtilis/metabolismo , Benzoxazóis/química , Técnicas Biossensoriais , Parede Celular/química , Parede Celular/metabolismo , Cumarínicos/química , Escherichia coli/metabolismo , Microscopia , Peptidoglicano/química
14.
J Bacteriol ; 193(22): 6266-75, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21926230

RESUMO

Leptospira spp. are thin, highly motile, slow-growing spirochetes that can be distinguished from other bacteria on the basis of their unique helical shape. Defining the mechanisms by which these bacteria generate and maintain this atypical morphology should greatly enhance our understanding of the fundamental physiology of these pathogens. In this study, we showed that peptidoglycan sacculi from Leptospira spp. retain the helical shape of intact cells. Interestingly, the distribution of muropeptides was different from that in the Escherichia coli model, indicating that specific enzymes might be active on the peptidoglycan macromolecule. We could alter the shape of Leptospira biflexa with the broad-spectrum ß-lactam antibiotic penicillin G and with amdinocillin and aztreonam, which are ß-lactams that preferentially target penicillin-binding protein 2 (PBP2) and PBP3, respectively, in some species. Although genetic manipulations of Leptospira spp. are scarce, we were able to obtain mutants with alterations in genes encoding PBPs, including PBP3. Loss of this protein resulted in cell elongation. We also generated an L. biflexa strain that conditionally expresses MreB. Loss of the MreB function was correlated with morphological abnormalities such as a localized increased diameter and heterogeneous length. A prolonged depletion of MreB resulted in cell lysis, suggesting that this protein is essential. These findings indicate that important aspects of leptospiral cell morphology are determined by the cytoskeleton and the murein layer, thus providing a starting point for a better understanding of the morphogenesis in these atypical bacteria.


Assuntos
Leptospira/química , Leptospira/citologia , Peptidoglicano/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Leptospira/genética , Leptospira/metabolismo , Estrutura Molecular , Mutação , Peptidoglicano/metabolismo
15.
J Bacteriol ; 193(24): 6887-94, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22001512

RESUMO

In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display DD-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC ß-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the ß-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional DD-endopeptidase and DD-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (k(cat)/K(m)) of 1,200 M(-1) s(-1) and 670 M(-1) s(-1), respectively, and removed the terminal D-alanine from muropeptides with a C-terminal D-Ala-D-Ala dipeptide. Both DD-peptidase activities were inhibited by 40 µM cefmetazole. AmpH also displayed a weak ß-lactamase activity for nitrocefin of 1.4 × 10(-3) nmol/µg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the DD-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling.


Assuntos
Dipeptidases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Ligação às Penicilinas/metabolismo , beta-Lactamases/metabolismo , Dipeptidases/química , Dipeptidases/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Transporte Proteico , Especificidade por Substrato , beta-Lactamases/química , beta-Lactamases/genética
16.
FEMS Microbiol Rev ; 32(2): 149-67, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18194336

RESUMO

The peptidoglycan (murein) sacculus is a unique and essential structural element in the cell wall of most bacteria. Made of glycan strands cross-linked by short peptides, the sacculus forms a closed, bag-shaped structure surrounding the cytoplasmic membrane. There is a high diversity in the composition and sequence of the peptides in the peptidoglycan from different species. Furthermore, in several species examined, the fine structure of the peptidoglycan significantly varies with the growth conditions. Limited number of biophysical data on the thickness, elasticity and porosity of peptidoglycan are available. The different models for the architecture of peptidoglycan are discussed with respect to structural and physical parameters.


Assuntos
Bactérias/química , Peptidoglicano/química , Bactérias/citologia , Parede Celular/química , Escherichia coli/química , Escherichia coli/ultraestrutura , Modelos Moleculares , Estrutura Molecular , Peptidoglicano/biossíntese , Peptidoglicano/classificação
17.
FEMS Microbiol Rev ; 32(2): 321-44, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18291013

RESUMO

For growth and division of rod-shaped bacteria, the cylindrical part of the sacculus has to be elongated and two new cell poles have to be synthesized. The elongation is performed by a protein complex, the elongase that inserts disaccharidepentapeptide units at a limited number of discrete sites while using the cytoskeletal MreB helix as a tracking device. Upon initiation of cell division by positioning of the cytoskeletal Z-ring at mid cell, a switch from dispersed to concentrated local peptidoglycan-synthesis occurs. From this point on, peptidoglycan synthesis is for a large part redirected from elongating activity to synthesis of new cell poles by the divisome. The divisome might be envisioned as an extended elongase because apart from its basic peptidoglycan synthesizing activity, specific functions have to be added. These are conversion from a cylinder to a sphere, invagination of the outer membrane and addition of hydrolases that allow separation of the daughter cells. The elongase and the divisome are dynamic hyperstructures that probably share part of their proteins. Although this multifunctionality and flexibility form a barrier to the functional elucidation of its individual subunits, it helps the cells to survive a variety of emergency situations and to proliferate securely.


Assuntos
Divisão Celular , Escherichia coli/citologia , Bacillus subtilis/citologia , Bacillus subtilis/crescimento & desenvolvimento , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/citologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Ligação às Penicilinas/análise , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/metabolismo
18.
PLoS One ; 14(1): e0211132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682094

RESUMO

Staphylococcus epidermidis is a bacterium frequently isolated from contaminated platelet concentrates (PCs), a blood product used to treat bleeding disorders in transfusion patients. PCs offer an accidental niche for colonization of S. epidermidis by forming biofilms and thus avoiding clearance by immune factors present in this milieu. Using biochemical and microscopy techniques, we investigated the structural changes of the peptidoglycan (PG) and the biofilm matrix of S. epidermidis biofilms formed in whole-blood derived PCs compared to biofilms grown in glucose-supplemented trypticase soy broth (TSBg). Both, the PG and the biofilm matrix are primary mechanisms of defense against environmental stress. Here we show that in PCs, the S. epidermidis biofilm matrix is mainly of a proteinaceous nature with extracellular DNA, in contrast to the predominant polysaccharide nature of the biofilm matrix formed in TSBg cultures. PG profile studies demonstrated that the PG of biofilm cells remodels during PC storage displaying fewer muropeptides variants than those observed in TSBg. The PG muropeptides contain two chemical modifications (amidation and O-acetylation) previously associated with resistance to antimicrobial agents by other staphylococci. Our study highlights two key structural features of S. epidermidis that are remodeled when exposed to human platelets and could be used as targets to reduce septic transfusions events.


Assuntos
Biofilmes/crescimento & desenvolvimento , Plaquetas/metabolismo , Peptidoglicano/metabolismo , Staphylococcus epidermidis/fisiologia , Plaquetas/microbiologia , Plaquetas/patologia , Humanos
19.
ISME J ; 12(2): 438-450, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29028003

RESUMO

Bacteria face tough competition in polymicrobial communities. To persist in a specific niche, many species produce toxic extracellular effectors to interfere with the growth of nearby microbes. These effectors include the recently reported non-canonical D-amino acids (NCDAAs). In Vibrio cholerae, the causative agent of cholera, NCDAAs control cell wall integrity in stationary phase. Here, an analysis of the composition of the extracellular medium of V. cholerae revealed the unprecedented presence of D-Arg. Compared with other D-amino acids, D-Arg displayed higher potency and broader toxicity in terms of the number of bacterial species affected. Tolerance to D-Arg was associated with mutations in the phosphate transport and chaperone systems, whereas D-Met lethality was suppressed by mutations in cell wall determinants. These observations suggest that NCDAAs target different cellular processes. Finally, even though virtually all Vibrio species are tolerant to D-Arg, only a few can produce this D-amino acid. Indeed, we demonstrate that D-Arg may function as part of a cooperative strategy in vibrio communities to protect non-producing members from competing bacteria. Because NCDAA production is widespread in bacteria, we anticipate that D-Arg is a relevant modulator of microbial subpopulations in diverse ecosystems.


Assuntos
Antibiose , Arginina/metabolismo , Vibrio cholerae/metabolismo , Bactérias/genética , Biodiversidade , Mutação , Vibrio/metabolismo
20.
Front Microbiol ; 8: 1264, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740487

RESUMO

Bacterial morphology is extremely diverse. Specific shapes are the consequence of adaptive pressures optimizing bacterial fitness. Shape affects critical biological functions, including nutrient acquisition, motility, dispersion, stress resistance and interactions with other organisms. Although the characteristic shape of a bacterial species remains unchanged for vast numbers of generations, periodical variations occur throughout the cell (division) and life cycles, and these variations can be influenced by environmental conditions. Bacterial morphology is ultimately dictated by the net-like peptidoglycan (PG) sacculus. The species-specific shape of the PG sacculus at any time in the cell cycle is the product of multiple determinants. Some morphological determinants act as a cytoskeleton to guide biosynthetic complexes spatiotemporally, whereas others modify the PG sacculus after biosynthesis. Accumulating evidence supports critical roles of morphogenetic processes in bacteria-host interactions, including pathogenesis. Here, we review the molecular determinants underlying morphology, discuss the evidence linking bacterial morphology to niche adaptation and pathogenesis, and examine the potential of morphological determinants as antimicrobial targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA