Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Anal Chem ; 89(17): 8822-8829, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28750163

RESUMO

In resistive pulse sensing of microRNA biomarkers, selectivity is achieved with polynucleotide-extended DNA probes, with the unzipping of a miRNA-DNA duplex in the nanopore recorded as a resistive current pulse. As the assay sensitivity is determined by the pulse frequency, we investigated the effect of cis/trans electrolyte concentration gradients applied over α-hemolysin nanopores. KCl gradients were found to exponentially increase the pulse frequency, while reducing the preference for 3'-first pore entry of the duplex and accelerating duplex unzipping, all manifestations of an enhanced electrophoretic force. Unlike silicon nitride pores, a counteracting contribution from electro-osmotic flow along the pore wall was not apparent. Significantly, a gradient of 0.5/4 M KCl increased the pulse frequency ∼60-fold with respect to symmetrical 1 M KCl, while the duplex dwell time in the nanopore remained acceptable for pulse detection and could be extended by LiCl addition. Steeper gradients caused lipid bilayer destabilization and pore instability, limiting the total number of recorded pulses. The 8-fold KCl gradient enabled a linear relationship between pulse frequency and miRNA concentration for the range of 0.1-100 nM. This work highlights differences between biological and solid-state nanopore sensing and provides strategies for subnanomolar miRNA quantification with bilayer-embedded porins.


Assuntos
Técnicas Eletroquímicas , MicroRNAs/análise , Nanoporos , Cloreto de Potássio/química , Sondas de DNA/química , Sondas de DNA/metabolismo , Eletrodos , Eletrólitos/química , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Limite de Detecção , MicroRNAs/metabolismo , Cloreto de Sódio/química
2.
Sensors (Basel) ; 16(5)2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27213382

RESUMO

High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 µm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.


Assuntos
Técnicas Biossensoriais/métodos , Ensaios de Triagem em Larga Escala/métodos , Canais Iônicos/isolamento & purificação , Bicamadas Lipídicas/química , Descoberta de Drogas/métodos , Humanos , Canais Iônicos/química , Dispositivos Lab-On-A-Chip
3.
Phys Chem Chem Phys ; 17(24): 15547-60, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-25623776

RESUMO

Silica nanoparticles are under development for intracellular drug delivery applications but can also have cytotoxic effects including cell membrane damage. In this study, we investigated the interactions of silica nanospheres of different size, surface chemistry and biocoating with membranes of phosphatidylcholine lipids. In liposome leakage assays many, but not all, of these nanoparticles induced dose-dependent dye leakage, indicative of membrane perturbation. It was found that 200 and 500 nm native-silica, aminated and carboxylated nanospheres induce near-total dye release from zwitterionic phosphatidylcholine liposomes at a particle/liposome ratio of ∼1, regardless of their surface chemistry, which we interpret as particle-supported bilayer formation following a global rearrangement of the vesicular membrane. In contrast, 50 nm diameter native-silica nanospheres did not induce total dye leakage below a particle/liposome ratio of ∼8, whereas amination or carboxylation, respectively, strongly reduced or prevented dye release. We postulate that for the smaller nanospheres, strong silica-bilayer interactions are manifested as bilayer engulfment of membrane-adsorbed particles, with localized lipid depletion eventually leading to collapse of the vesicular membrane. Protein coating of the particles considerably reduced dye leakage and lipid bilayer coating prevented dye release all together, while the inclusion of 33% anionic lipids in the liposomes reduced dye leakage for both native-silica and aminated surfaces. These results, which are compared with the effect of polystyrene nanoparticles and other engineered nanomaterials on lipid bilayers, and which are discussed in relation to nanosilica-induced cell membrane damage and cytotoxicity, indicate that a native-silica nanoparticle surface chemistry is a particularly strong membrane interaction motif.


Assuntos
Lipossomos/química , Nanopartículas/química , Fosfatidilcolinas/química , Dióxido de Silício/química , Lipossomos/síntese química , Tamanho da Partícula , Propriedades de Superfície
4.
Biophys J ; 106(8): 1650-9, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24739164

RESUMO

Planar lipid bilayers suspended in apertures provide a controlled environment for ion channel studies. However, short lifetimes and poor mechanical stability of suspended bilayers limit the experimental throughput of bilayer electrophysiology experiments. Although bilayers are more stable in smaller apertures, ion channel incorporation through vesicle fusion with the suspended bilayer becomes increasingly difficult. In an alternative bilayer stabilization approach, we have developed shaped apertures in SU8 photoresist that have tapered sidewalls and a minimum diameter between 60 and 100 µm. Bilayers formed at the thin tip of these shaped apertures, either with the painting or the folding method, display drastically increased lifetimes, typically >20 h, and mechanical stability, being able to withstand extensive perturbation of the buffer solution. Single-channel electrical recordings of the peptide alamethicin and of the proteoliposome-delivered potassium channel KcsA demonstrate channel conductance with low noise, made possible by the small capacitance of the 50 µm thick SU8 septum, which is only thinned around the aperture, and unimpeded proteoliposome fusion, enabled by the large aperture diameter. We anticipate that these shaped apertures with micrometer edge thickness can substantially enhance the throughput of channel characterization by bilayer lipid membrane electrophysiology, especially in combination with automated parallel bilayer platforms.


Assuntos
Compostos de Epóxi/química , Luz , Bicamadas Lipídicas/química , Alameticina/química , Proteínas de Bactérias/metabolismo , Capacitância Elétrica , Fluorescência , Lipossomos/química , Fusão de Membrana , Microscopia Eletrônica de Varredura , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Canais de Potássio/metabolismo
5.
Biochim Biophys Acta ; 1818(1): 90-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21963409

RESUMO

The activity of the potassium channel KcsA is tightly regulated through the interactions of anionic lipids with high-affinity non-annular lipid binding sites located at the interface between the channel's subunits. Here we present solid-state phosphorous NMR studies that resolve the negatively charged lipid phosphatidylglycerol within the non-annular lipid-binding site. Perturbations in chemical shift observed upon the binding of phosphatidylglycerol are indicative of the interaction of positively charged sidechains within the non-annular binding site and the negatively charged lipid headgroup. Site directed mutagenesis studies have attributed these charge interactions to R64 and R89. Functionally the removal of the positive charges from R64 and R89 appears to act synergistically to reduce the probability of channel opening.


Assuntos
Proteínas de Bactérias/química , Ressonância Magnética Nuclear Biomolecular/métodos , Fosfatidilgliceróis/metabolismo , Canais de Potássio/química , Proteínas Recombinantes/química , Arginina/genética , Arginina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Eletrofisiologia , Escherichia coli , Ativação do Canal Iônico , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Potenciais da Membrana/fisiologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosfatidilgliceróis/química , Plasmídeos , Potássio/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática
6.
Analyst ; 138(24): 7294-8, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24162163

RESUMO

Single-channel electrophysiology with lipid bilayer systems requires ion channel expression, purification from cell culture, and reconstitution in proteoliposomes for delivery to a planar bilayer. Here we demonstrate that single-channel current measurements of the potassium channels KcsA and hERGS5-S6 can be obtained by direct insertion in interdroplet lipid bilayers from microliters of a cell-free expression medium.


Assuntos
Canais Iônicos/fisiologia , Bicamadas Lipídicas , Sistema Livre de Células , Proteolipídeos
7.
Nano Lett ; 12(4): 1868-72, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22432636

RESUMO

Polysilicon nanowire biosensors have been fabricated using a top-down process and were used to determine the binding constant of two inflammatory biomarkers. A very low cost nanofabrication process was developed, based on simple and mature photolithography, thin film technology, and plasma etching, enabling an easy route to mass manufacture. Antibody-functionalized nanowire sensors were used to detect the proteins interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) over a wide range of concentrations, demonstrating excellent sensitivity and selectivity, exemplified by a detection sensitivity of 10 fM in the presence of a 100,000-fold excess of a nontarget protein. Nanowire titration curves gave antibody-antigen dissociation constants in good agreement with low-salt enzyme-linked immunosorbent assays (ELISAs). This fabrication process produces high-quality nanowires that are suitable for low-cost mass production, providing a realistic route to the realization of disposable nanoelectronic point-of-care (PoC) devices.


Assuntos
Técnicas Biossensoriais/instrumentação , Membranas Artificiais , Nanofios/química , Polímeros/química , Silício/química , Reações Antígeno-Anticorpo , Biomarcadores/análise , Cristalização , Ensaio de Imunoadsorção Enzimática , Inflamação , Interleucina-8/análise , Interleucina-8/imunologia , Polímeros/síntese química , Propriedades de Superfície , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/imunologia
8.
Biophys Chem ; 281: 106721, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808479

RESUMO

Many antimicrobial peptides (AMPs) are cationic host defence peptides (HDPs) that interact with microbial membranes. This ability may lead to implementation of AMPs as therapeutics to overcome the wide-spread antibiotic resistance problem as the affected bacteria may not be able to recover from membrane lysis types of attack. AMP interactions with lipid bilayer membranes are typically explained through three mechanisms, i.e., barrel-stave pore, toroidal pore and carpet models. Electrical bilayer recording is a relatively simple and sensitive technique that is able to capture the nanoscale perturbations caused by the AMPs in the bilayer membranes. Molecular-level understanding of the behaviour of AMPs in relation to lipid bilayers mimicking bacterial and human cell membranes is essential for their development as novel therapeutic agents that are capable of targeted action against disease causing micro-organisms. The effects of four AMPs (aurein 1.2, caerin 1.1, citropin 1.1 and maculatin 1.1 from the skin secretions of Australian tree frogs) and the toxin melittin (found in the venom of honeybees) on two different phospholipid membranes were studied using the electrical bilayer recording technique. Bilayers composed of zwitterionic (DPhPC) and anionic (DPhPC/POPG) lipids were used to mimic the charge of eukaryotic and prokaryotic cell membranes, respectively, so as to determine the corresponding interaction mechanisms for different concentrations of the peptide. Analysis of the dataset corresponding to the four frog AMPs, as well as the resulting dataset corresponding to the bee toxin, confirms the proposed peptide-bilayer interaction models in existing publications and demonstrates the importance of using appropriate bilayer compositions and peptide concentrations for AMP studies.


Assuntos
Proteínas de Anfíbios , Peptídeos Antimicrobianos , Animais , Proteínas de Anfíbios/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anuros/metabolismo , Austrália , Membrana Celular/metabolismo , Bicamadas Lipídicas/química
9.
J Mol Biol ; 368(4): 982-97, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17382345

RESUMO

The disruption of intracellular calcium homeostasis plays a central role in the pathology of Alzheimer's disease, which is also characterized by accumulation of the amyloid-beta peptides Abeta40 and Abeta42. These amphipathic peptides may become associated with neuronal membranes and affect their barrier function, resulting in the loss of calcium homeostasis. This suggestion has been extensively investigated by exposing protein-free model membranes, either vesicles or planar bilayers, to soluble Abeta. Primarily unstructured Abeta has been shown to undergo a membrane-induced conformational change to either primarily beta-structure or helical structure, depending, among other factors, on the model membrane composition. Association of Abeta renders lipid bilayers permeable to ions but there is dispute whether this is due to the formation of discrete transmembrane ion channels of Abeta peptides, or to a non-specific perturbation of bilayer integrity by lipid head group-associated Abeta. Here, we have attempted incorporation of Abeta in the hydrophobic core of zwitterionic bilayers, the most simple model membrane system, by preparing proteoliposomes by hydration of a mixed film of Abeta peptides and phosphatidylcholine (PC) lipids. Despite the use of a solvent mixture in which Abeta40 and Abeta42 are almost entirely helical, the Abeta analogs were beta-structured in the resulting vesicle dispersions. When Abeta40-containing vesicles were fused into a zwitterionic planar bilayer, the typical irregular "single channel-like" conductance of Abeta was observed. The maximum conductance increased with additional vesicle fusion, while still exhibiting single channel-like behavior. Supported bilayers formed from Abeta40/PC vesicles did not exhibit any channel-like topological features, but the bilayer destabilized in time. Abeta40 was present primarily as beta-sheets in supported multilayers formed from the same vesicles. The combined observations argue for a non-specific perturbation of zwitterionic bilayers by surface association of small amphipathic Abeta40 assemblies.


Assuntos
Peptídeos beta-Amiloides/química , Bicamadas Lipídicas/química , Fragmentos de Peptídeos/química , Fosfatidilcolinas/química , Lipossomos/química , Microscopia de Força Atômica , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Sci Rep ; 8(1): 12656, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30140015

RESUMO

The confluence of droplet-compartmentalised chemical systems and architectures composed of interacting droplets points towards a novel technology mimicking core features of the cellular architecture that dominates biology. A key challenge to achieve such a droplet technology is long-term stability in conjunction with interdroplet communication. Here, we probed the parameter space of the Belousov-Zhabotinsky (BZ) medium, an extensively studied model for non-equilibrium chemical reactions, pipetted as 2.5 mm droplets in hexadecane oil. The presence of asolectin lipids enabled the formation of arrays of contacted BZ droplets, of which the wave patterns were characterised over time. We utilised laser-cut acrylic templates with over 40 linear oil-filled slots in which arrays are formed by pipetting droplets of the desired BZ composition, enabling parallel experiments and automated image analysis. Using variations of conventional malonic acid BZ medium, wave propagation over droplet-droplet interfaces was not observed. However, a BZ medium containing both malonic acid and 1,4-cyclohexanedione was found to enable inter-droplet wave propagation. We anticipate that the chemical excitation properties of this mixed-substrate BZ medium, in combination with the droplet stability of the networks demonstrated here for nearly 400 droplets in a template-defined topology, will facilitate the development of scalable functional droplet networks.

11.
Biophys Chem ; 121(3): 171-6, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16473457

RESUMO

We have studied the thermodynamic, surface, and structural properties of alphaM1 transmembrane sequence of the nicotinic acetylcholine receptor (nAChR) by using Langmuir monolayer, FT-IR spectroscopy and molecular dynamics simulation techniques in membrane-mimicking environments. M1 spontaneously incorporates into a lipid-free air-water interface, showing a favourable adsorption free energy of -7.2 kcal/mol. A cross-sectional molecular area of 210 A(2)/molecule, a surface potential of 4.2 fV/molecule and a high stability of the film were deducted from pure M1 monolayers. FT-IR experiments and molecular dynamics simulations in membrane-mimicking environments (sodium-dodecyl-sulfate and CCl(4), respectively) indicate coexistence between helical and non-helical structures. Furthermore, mixed peptide-lipid monolayers and monolayer penetration experiments were performed in order to study the peptide-lipid interaction. Mixed with condensed lipids (dipalmitoyl-phosphocholine, and dipalmitoyl-phosphoglycerol), M1 shows immiscible/miscible behaviour at low/high peptide concentration, respectively. Conversely, a complete miscible peptide-lipid interface is observed with liquid-expanded lipids (palmitoyl-oleoyl-phosphocholine, and palmitoyl-oleoyl-phosphoglycerol). Peptide penetration experiments demonstrate that the M1 peptide preferentially interacts with zwitterionic phosphocholine interfaces.


Assuntos
Fragmentos de Peptídeos/química , Receptores Nicotínicos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Adsorção , Sequência de Aminoácidos , Membrana Celular/química , Simulação por Computador , Micelas , Modelos Moleculares , Dados de Sequência Molecular , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Conformação Proteica , Subunidades Proteicas/química , Dodecilsulfato de Sódio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Termodinâmica , Água/química
12.
Biochim Biophys Acta ; 1665(1-2): 40-7, 2004 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-15471569

RESUMO

The transmembrane domain of the nicotinic acetylcholine receptor (nAChR) is predominantly alpha-helical, and of the four distinctly different transmembrane M-segments, only the helicity of M1 is ambiguous. In this study, we have investigated the conformation of a membrane-embedded synthetic M1 segment by solid-state nuclear magnetic resonance (NMR) methods. A 35-residue peptide representing the extended alphaM1 domain 206-240 of the Torpedo californica nAChR was synthesized with specific 13C - and 15N-labelled amino acids, and was incorporated in different phosphatidylcholine model membranes. The chemical shift of the isotopic labels was resolved by magic angle spinning (MAS) NMR and could be related to the secondary structure of the alphaM1 analog at the labelled sites. Our results show that the membrane-embedded alphaM1 segment forms an unstable alpha-helix, particularly near residue Leu18 (alphaLeu223 in the entire nAChR). This non-helical tendency was most pronounced when the peptide was incorporated in fully hydrated phospholipid bilayers, with an estimated 40-50% of the peptides having an extended conformation at position Leu18. We propose that the conserved proline residue at position 16 in the alphaM1 analog imparts a conformational flexibility on the M1 segments that could enable membrane-mediated modulation of nAChR activity.


Assuntos
Lipossomos/química , Fragmentos de Peptídeos/química , Receptores Nicotínicos/química , Sequência de Aminoácidos , Animais , Isótopos , Proteínas de Membrana/química , Movimento (Física) , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/síntese química , Fosfatidilcolinas , Maleabilidade , Prolina , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Torpedo
13.
Artif Life ; 21(2): 195-204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25622015

RESUMO

The quintessential living element of all organisms is the cell-a fluid-filled compartment enclosed, but not isolated, by a layer of amphiphilic molecules that self-assemble at its boundary. Cells of different composition can aggregate and communicate through the exchange of molecules across their boundaries. The astounding success of this architecture is readily apparent throughout the biological world. Inspired by the versatility of nature's architecture, we investigate aggregates of membrane-enclosed droplets as a design concept for robotics. This will require droplets capable of sensing, information processing, and actuation. It will also require the integration of functionally specialized droplets into an interconnected functional unit. Based on results from the literature and from our own laboratory, we argue the viability of this approach. Sensing and information processing in droplets have been the subject of several recent studies, on which we draw. Integrating droplets into coherently acting units and the aspect of controlled actuation for locomotion have received less attention. This article describes experiments that address both of these challenges. Using lipid-coated droplets of Belousov-Zhabotinsky reaction medium in oil, we show here that such droplets can be integrated and that chemically driven mechanical motion can be achieved.

14.
Artif Life ; 21(2): 225-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25622017

RESUMO

Excitation and oscillation are central to living systems. For excitable systems, which can be brought into oscillation by an external stimulus, the excitation threshold is a crucial parameter. This is evident for neurons, which only generate an action potential when exposed to a sufficiently high concentration of excitatory neurotransmitters, which may only be achieved when multiple presynaptic axons deliver their action potential simultaneously to the synaptic cleft. Dynamic systems composed of relatively simple chemicals are of interest because they can serve as a model for physiological processes or can be exploited to implement chemical computing. With these applications in mind, we have studied the properties of the oscillatory Belousov-Zhabotinsky (BZ) reaction in 3D-printed reaction vessels with open channels of different dimensions. It is demonstrated that the channel geometry can be used to modulate the excitability of the BZ medium, switching a continuously oscillating medium to an excitable medium. Because large networks of channel-connected reaction wells of different depth can easily be fabricated by 3D printing, local excitability modulation could be built into the structure of the reaction vessel itself, opening the way to more extensive experimentation with networks of chemical oscillators.

15.
Biomicrofluidics ; 9(1): 014103, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25610515

RESUMO

We describe a scalable artificial bilayer lipid membrane platform for rapid electrophysiological screening of ion channels and transporters. A passive pumping method is used to flow microliter volumes of ligand solution across a suspended bilayer within a microfluidic chip. Bilayers are stable at flow rates up to ∼0.5 µl/min. Phospholipid bilayers are formed across a photolithographically defined aperture made in a dry film resist within the microfluidic chip. Bilayers are stable for many days and the low shunt capacitance of the thin film support gives low-noise high-quality single ion channel recording. Dose-dependent transient blocking of α-hemolysin with ß-cyclodextrin (ß-CD) and polyethylene glycol is demonstrated and dose-dependent blocking studies of the KcsA potassium channel with tetraethylammonium show the potential for determining IC50 values. The assays are fast (30 min for a complete IC50 curve) and simple and require very small amounts of compounds (100 µg in 15 µl). The technology can be scaled so that multiple bilayers can be addressed, providing a screening platform for ion channels, transporters, and nanopores.

16.
Nanoscale Res Lett ; 10: 79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852375

RESUMO

In this work, we investigate sensor design approaches for eliminating the effects of parasitic resistance in nanowire and nanoribbon biosensors. Measurements of pH with polysilicon nanoribbon biosensors are used to demonstrate a reduction in sensitivity as the sensor length is reduced. The sensitivity (normalised conductance change) is reduced from 11% to 5.5% for a pH change from 9 to 3 as the sensing window length is reduced from 51 to 11 µm. These results are interpreted using a simple empirical model, which is also used to demonstrate how the sensitivity degradation can be alleviated by a suitable choice of sensor window length. Furthermore, a differential sensor design is proposed that eliminates the detrimental effects of parasitic resistance. Measurements on the differential sensor give a sensitivity of 15%, which is in good agreement with the predicted maximum sensitivity obtained from modeling.

17.
PLoS One ; 10(7): e0131286, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147601

RESUMO

This paper describes the use of a newly-developed micro-chip bilayer platform to examine the electrophysiological properties of the prokaryotic voltage-gated sodium channel pore (Na(v)Sp) from Silicibacter pomeroyi. The platform allows up to 6 bilayers to be analysed simultaneously. Proteoliposomes were incorporated into suspended lipid bilayers formed within the microfluidic bilayer chips. The chips provide access to bilayers from either side, enabling the fast and controlled titration of compounds. Dose-dependent modulation of the opening probability by the channel blocking drug nifedipine was measured and its IC50 determined.


Assuntos
Ativação do Canal Iônico/fisiologia , Microfluídica , Rhodobacteraceae/metabolismo , Canais de Sódio/metabolismo , Bicamadas Lipídicas/metabolismo , Proteolipídeos/metabolismo
18.
IEEE Trans Biomed Circuits Syst ; 9(3): 334-44, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25252284

RESUMO

Lipid bilayer membrane (BLM) arrays are required for high throughput analysis, for example drug screening or advanced DNA sequencing. Complex microfluidic devices are being developed but these are restricted in terms of array size and structure or have integrated electronic sensing with limited noise performance. We present a compact and scalable multichannel electrophysiology platform based on a hybrid approach that combines integrated state-of-the-art microelectronics with low-cost disposable fluidics providing a platform for high-quality parallel single ion channel recording. Specifically, we have developed a new integrated circuit amplifier based on a novel noise cancellation scheme that eliminates flicker noise derived from devices under test and amplifiers. The system is demonstrated through the simultaneous recording of ion channel activity from eight bilayer membranes. The platform is scalable and could be extended to much larger array sizes, limited only by electronic data decimation and communication capabilities.


Assuntos
Eletroquímica/instrumentação , Bicamadas Lipídicas/química , Técnicas Analíticas Microfluídicas/instrumentação , Amplificadores Eletrônicos , Redes de Comunicação de Computadores , Eletroquímica/métodos , Desenho de Equipamento , Canais Iônicos , Dispositivos Lab-On-A-Chip/economia
19.
Chem Phys Lipids ; 122(1-2): 107-20, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12598042

RESUMO

Solid-state NMR and CD spectroscopy were used to study the effect of antimicrobial peptides (aurein 1.2, citropin 1.1, maculatin 1.1 and caerin 1.1) from Australian tree frogs on phospholipid membranes. 31P NMR results revealed some effect on the phospholipid headgroups when the peptides interact with DMPC/DHPC (dimyristoylphosphatidylcholine/dihexanoylphosphatidylcholine) bicelles and aligned DMPC multilayers. 2H NMR showed a small effect of the peptides on the acyl chains of DMPC in bicelles or aligned multilayers, suggesting interaction with the membrane surface for the shorter peptides and partial insertion for the longer peptides. 15N NMR of selectively labelled peptides in aligned membranes and oriented CD spectra indicated an alpha-helical conformation with helix long axis approximately 50 degrees to the bilayer surface at high peptide concentrations. The peptides did not appear to insert deeply into PC membranes, which may explain why these positively charged peptides preferentially lyse bacterial rather than eucaryotic cells.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Lipídeos de Membrana/química , Fosfolipídeos/química , Sequência de Aminoácidos , Anfíbios , Animais , Dicroísmo Circular , Bicamadas Lipídicas , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Conformação Proteica
20.
Lab Chip ; 14(4): 722-9, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24336841

RESUMO

In droplet microfluidics, aqueous droplets are typically separated by an oil phase to ensure containment of molecules in individual droplets of nano-to-picoliter volume. An interesting variation of this method involves bringing two phospholipid-coated droplets into contact to form a lipid bilayer in-between the droplets. These interdroplet bilayers, created by manual pipetting of microliter droplets, have proved advantageous for the study of membrane transport phenomena, including ion channel electrophysiology. In this study, we adapted the droplet microfluidics methodology to achieve automated formation of interdroplet lipid bilayer arrays. We developed a 'millifluidic' chip for microliter droplet generation and droplet packing, which is cast from a 3D-printed mould. Droplets of 0.7-6.0 µL volume were packed as homogeneous or heterogeneous linear arrays of 2-9 droplets that were stable for at least six hours. The interdroplet bilayers had an area of up to 0.56 mm(2), or an equivalent diameter of up to 850 µm, as determined from capacitance measurements. We observed osmotic water transfer over the bilayers as well as sequential bilayer lysis by the pore-forming toxin melittin. These millifluidic interdroplet bilayer arrays combine the ease of electrical and optical access of manually pipetted microdroplets with the automation and reproducibility of microfluidic technologies. Moreover, the 3D-printing based fabrication strategy enables the rapid implementation of alternative channel geometries, e.g. branched arrays, with a design-to-device time of just 24-48 hours.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA