Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 424(1-2): 87-98, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27761848

RESUMO

Dexamethasone is a potent and widely used anti-inflammatory and immunosuppressive drug. However, recent evidences suggest that dexamethasone cause pathologic cardiac remodeling, which later impairs cardiac function. The mechanism behind the cardiotoxic effect of dexamethasone is elusive. The present study aimed to verify if dexamethasone-induced cardiotoxicity would be associated with changes in the cardiac net balance of calcium handling protein and calcineurin signaling pathway activation. Wistar rats (~400 g) were treated with dexamethasone (35 µg/g) in drinking water for 15 days. After dexamethasone treatment, we analyzed cardiac function, cardiomyocyte diameter, cardiac fibrosis, and the expression of proteins involved in calcium handling and calcineurin signaling pathway. Dexamethasone-treated rats showed several cardiovascular abnormalities, including elevated blood pressure, diastolic dysfunction, cardiac fibrosis, and cardiomyocyte apoptosis. Regarding the expression of proteins involved in calcium handling, dexamethasone increased phosphorylation of phospholamban at threonine 17, reduced protein levels of Na+/Ca2+ exchanger, and had no effect on protein expression of Serca2a. Protein levels of NFAT and GATA-4 were increased in both cytoplasmic and nuclear faction. In addition, dexamethasone increased nuclear protein levels of calcineurin. Altogether our findings suggest that dexamethasone causes pathologic cardiac remodeling and diastolic dysfunction, which is associated with impaired calcium handling and calcineurin signaling pathway activation.


Assuntos
Calcineurina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cardiomegalia/metabolismo , Dexametasona/efeitos adversos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Dexametasona/farmacologia , Masculino , Miocárdio/patologia , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar
2.
Amino Acids ; 42(5): 1695-701, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21373767

RESUMO

We aimed to investigate the possible role of creatine (CR) supplementation in counteracting dexamethasone-induced muscle wasting and insulin resistance in rats. Also, we examined whether CR intake would modulate molecular pathways involved in muscle remodeling and insulin signaling. Animals were randomly divided into four groups: (1) dexamethasone (DEX); (2) control pair-fed (CON-PF); (3) dexamethasone plus CR (DEX-CR); and (4) CR pair-fed (CR-PF). Dexamethasone (5 mg/kg/day) and CR (5 g/kg/day) were given via drinking water for 7 days. Plantaris and extensor digitorum longus (EDL) muscles were removed for analysis. Plantaris and EDL muscle mass were significantly reduced in the DEX-CR and DEX groups when compared with the CON-PF and CR-PF groups (P<0.05). Dexamethasone significantly decreased phospho-Ser473-Akt protein levels compared to the CON-PF group (P<0.05) and CR supplementation aggravated this response (P<0.001). Serum glucose was significantly increased in the DEX group when compared with the CON-PF group (DEX 7.8±0.6 vs. CON-PF 5.2±0.5 mmol/l; P<0.05). CR supplementation significantly exacerbated hyperglycemia in the dexamethasone-treated animals (DEX-CR 15.1±2.4 mmol/l; P<0.05 vs. others). Dexamethasone reduced GLUT-4 translocation when compared with the CON-PF and CR-PF (P<0.05) groups and this response was aggravated by CR supplementation (P<0.05 vs. others). In conclusion, supplementation with CR resulted in increased insulin resistance and did not attenuate muscle wasting in rats treated with dexamethasone. Given the contrast with the results of human studies that have shown benefits of CR supplementation on muscle atrophy and insulin sensitivity, we suggest caution when extrapolating this animal data to human subjects.


Assuntos
Creatina/administração & dosagem , Dexametasona/administração & dosagem , Resistência à Insulina , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/metabolismo , Animais , Glicemia/efeitos dos fármacos , Água Potável , Transportador de Glucose Tipo 4/metabolismo , Humanos , Masculino , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA