Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Talanta ; 187: 165-171, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853030

RESUMO

The biotechnological evolution towards the development of antigens to detect leprosy has been progressing. However, the identification of leprosy in paucibacillary patients, based solely on the antigen-antibody interaction still remains a challenge. The complexity of clinical manifestations requires innovative approaches to improve the sensitivity of assays to detect leprosy before the onset of symptoms, thus avoiding disabilities and contributing, indirectly, to reduce transmission. In this study, the strategies employed for early leprosy diagnosis were: i. using a phage-displayed mimotope (APDDPAWQNIFNLRR) which mimics an immunodominant sequence (PPNDPAWQRNDPILQ) of an antigen of Mycobacterium leprae known as Ag85B; ii. engineering the mimotope by adding a C-terminal flexible spacer (SGSG-C); iii. conjugating the mimotope to a carrier protein to provide better exposure to antibodies; iv. amplifying the signal using biotin-streptavidin detection system in an ELISA; and v. coating the optimized mimotope on a quartz crystal microbalance (QCM) sensor for label-free biosensing. The ELISA sensitivity increased up to 91.7% irrespective of the immunological profile of the 132 patients assayed. By using comparative modeling, the M. tuberculosis Ag85B was employed as a template to ascertain which features make the mimotope a good antigen in terms of its specificity. For the first time, a sensitive QCM-based immunosensor to detect anti M. leprae antibodies in human serum was used. M. leprae antibodies could also be detected in the sera of paucibacillary patients; thus, the use of a mimotope-derived synthetic peptide as bait for antibodies in a novel analytical label-free immunoassay for leprosy diagnosis exhibits great potential.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Hanseníase/diagnóstico , Mycobacterium leprae/isolamento & purificação , Técnicas de Microbalança de Cristal de Quartzo , Adulto , Animais , Biomarcadores/análise , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
2.
J Photochem Photobiol B ; 151: 208-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26313857

RESUMO

The present work reports the spectroscopic and thermo-optical properties of CdSe/ZnS and CdSe/CdS core-shell quantum dots (QDs) embedded in synthetic saliva. Spectroscopy studies were performed applying nonfunctionalized CdSe/ZnS QDs (3.4, 3.9 and 5.1 nm cores) and hydroxyl group-functionalized ultrasmall CdSe/CdS core-shell quantum dots (1.6 nm core) suspended in artificial saliva at different potential of hydrogen (pH) values. Saliva was chosen because it is important in a variety of functions such as protecting teeth through the buffering capacity of the formed biofilm, hydration, and dental remineralization. Thermo-optical characterizations using the thermal lens (TL) technique were performed in QD-biofluids for different QD sizes and pH values (3.9-8.3) of the synthetic oral fluids. Transient TL measurements were applied to determine the fluorescence quantum efficiency (η) in QD-biomaterial systems. High η value was obtained for ultrasmall CdSe/CdS QDs. Fluorescence spectral measurements of the biomaterials support the TL results. In addition, for nonfunctionalized (3.4 and 5.1 nm) and hydroxyl group-functionalized QDs, the temporal behavior of the fluorescence spectra was accomplished about approximately 1200 h at two different biofluid pH values (3.9 and 8.3). The temporal fluorescence intensity result is dependent on the pH of the saliva in which the QDs were embedded, QD functionalization and QD sizes. The time for an approximately 50% decrease in the peak intensity fluorescence of CdSe/ZnS QDs (3.4 nm core) and ultrasmall CdSe/CdS QDs is respectively 25 h and 312 h at pH 3.9 and 48 h and 360 h at pH 8.3.


Assuntos
Pontos Quânticos/química , Saliva/química , Compostos de Cádmio/química , Concentração de Íons de Hidrogênio , Nanoestruturas/química , Compostos de Selênio/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA