Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 594(7861): 117-123, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34012113

RESUMO

The human genome expresses thousands of natural antisense transcripts (NAT) that can regulate epigenetic state, transcription, RNA stability or translation of their overlapping genes1,2. Here we describe MAPT-AS1, a brain-enriched NAT that is conserved in primates and contains an embedded mammalian-wide interspersed repeat (MIR), which represses tau translation by competing for ribosomal RNA pairing with the MAPT mRNA internal ribosome entry site3. MAPT encodes tau, a neuronal intrinsically disordered protein (IDP) that stabilizes axonal microtubules. Hyperphosphorylated, aggregation-prone tau forms the hallmark inclusions of tauopathies4. Mutations in MAPT cause familial frontotemporal dementia, and common variations forming the MAPT H1 haplotype are a significant risk factor in many tauopathies5 and Parkinson's disease. Notably, expression of MAPT-AS1 or minimal essential sequences from MAPT-AS1 (including MIR) reduces-whereas silencing MAPT-AS1 expression increases-neuronal tau levels, and correlate with tau pathology in human brain. Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.


Assuntos
Biossíntese de Proteínas/genética , Proteostase/genética , RNA Antissenso/genética , Tauopatias/genética , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Idoso , Animais , Sítios de Ligação , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Diferenciação Celular , Progressão da Doença , Feminino , Humanos , Sítios Internos de Entrada Ribossomal/genética , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Ribossomos/metabolismo , Proteínas tau/biossíntese
2.
Alzheimers Dement ; 20(6): 4290-4314, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696263

RESUMO

Two of every three persons living with dementia reside in low- and middle-income countries (LMICs). The projected increase in global dementia rates is expected to affect LMICs disproportionately. However, the majority of global dementia care costs occur in high-income countries (HICs), with dementia research predominantly focusing on HICs. This imbalance necessitates LMIC-focused research to ensure that characterization of dementia accurately reflects the involvement and specificities of diverse populations. Development of effective preventive, diagnostic, and therapeutic approaches for dementia in LMICs requires targeted, personalized, and harmonized efforts. Our article represents timely discussions at the 2022 Symposium on Dementia and Brain Aging in LMICs that identified the foremost opportunities to advance dementia research, differential diagnosis, use of neuropsychometric tools, awareness, and treatment options. We highlight key topics discussed at the meeting and provide future recommendations to foster a more equitable landscape for dementia prevention, diagnosis, care, policy, and management in LMICs. HIGHLIGHTS: Two-thirds of persons with dementia live in LMICs, yet research and costs are skewed toward HICs. LMICs expect dementia prevalence to more than double, accompanied by socioeconomic disparities. The 2022 Symposium on Dementia in LMICs addressed advances in research, diagnosis, prevention, and policy. The Nairobi Declaration urges global action to enhance dementia outcomes in LMICs.


Assuntos
Envelhecimento , Demência , Países em Desenvolvimento , Humanos , Demência/diagnóstico , Demência/terapia , Demência/epidemiologia , Encéfalo , Congressos como Assunto , Pesquisa Biomédica
3.
J Cell Mol Med ; 26(4): 1327-1331, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34951131

RESUMO

The microtubule-associated protein tau gene (MAPT) 10+16 intronic mutation causes frontotemporal lobar degeneration (FTLD) by increasing expression of four-repeat (4R)-tau isoforms. We investigated the potential role for astrocytes in the pathogenesis of FTLD by studying the expression of 4R-tau. We derived astrocytes and neurons from induced pluripotent stem cells from two asymptomatic 10+16 carriers which, compared to controls, showed persistently increased 4R:3R-tau transcript and protein ratios in both cell types. However, beyond 300 days culture, 10+16 neurons showed less marked increase of this 4R:3R-tau transcript ratio compared to astrocytes. Interestingly, throughout maturation, both 10+16 carriers consistently displayed different 4R:3R-tau transcript and protein ratios. These elevated levels of 4R-tau in astrocytes implicate glial cells in the pathogenic process and also suggests a cell-type-specific regulation and may inform and help on treatment of pre-clinical tauopathies.


Assuntos
Degeneração Lobar Frontotemporal , Tauopatias , Proteínas tau , Astrócitos/metabolismo , Humanos , Mutação/genética , Isoformas de Proteínas/genética , Tauopatias/genética , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Neuropathol Appl Neurobiol ; 47(5): 640-652, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33368549

RESUMO

AIMS: Multiple system atrophy (MSA) is a fatal neurodegenerative disease. Similar to Parkinson's disease (PD), MSA is an α-synucleinopathy, and its pathological hallmark consists of glial cytoplasmic inclusions (GCIs) containing α-synuclein (SNCA) in oligodendrocytes. We previously identified consistent changes in myelin-associated oligodendrocyte basic protein (MOBP) and huntingtin interacting protein 1 (HIP1) DNA methylation status in MSA. We hypothesized that if differential DNA methylation at these loci is mechanistically relevant for MSA, it should have downstream consequences on gene regulation. METHODS: We investigated the relationship between MOBP and HIP1 DNA methylation and mRNA levels in cerebellar white matter from MSA and healthy controls. Additionally, we analysed protein expression using western blotting, immunohistochemistry and proximity ligation assays. RESULTS: We found decreased MOBP mRNA levels significantly correlated with increased DNA methylation in MSA. For HIP1, we found a distinct relationship between DNA methylation and gene expression levels in MSA compared to healthy controls, suggesting this locus may be subjected to epigenetic remodelling in MSA. Although soluble protein levels for MOBP and HIP1 in cerebellar white matter were not significantly different between MSA cases and controls, we found striking differences between MSA and other neurodegenerative diseases, including PD and Huntington's disease. We also found that MOBP and HIP1 are mislocalized into the GCIs in MSA, where they appear to interact with SNCA. CONCLUSIONS: This study supports a role for DNA methylation in downregulation of MOBP mRNA in MSA. Most importantly, the identification of MOBP and HIP1 as new constituents of GCIs emphasizes the relevance of these two loci to the pathogenesis of MSA.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Proteínas da Mielina/metabolismo , Neuroglia/patologia , alfa-Sinucleína/metabolismo , Humanos , Corpos de Inclusão/patologia , Atrofia de Múltiplos Sistemas/metabolismo , Proteínas da Mielina/genética , Neuroglia/metabolismo , Oligodendroglia/patologia , Doença de Parkinson/patologia , Substância Branca/patologia
5.
Acta Neuropathol ; 139(4): 717-734, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31950334

RESUMO

Corticobasal degeneration typically progresses gradually over 5-7 years from onset till death. Fulminant corticobasal degeneration cases with a rapidly progressive course were rarely reported (RP-CBD). This study aimed to investigate their neuropathological characteristics. Of the 124 autopsy-confirmed corticobasal degeneration cases collected from 14 centres, we identified 6 RP-CBD cases (4.8%) who died of advanced disease within 3 years of onset. These RP-CBD cases had different clinical phenotypes including rapid global cognitive decline (N = 2), corticobasal syndrome (N = 2) and Richardson's syndrome (N = 2). We also studied four corticobasal degeneration cases with an average disease duration of 3 years or less, who died of another unrelated illness (Intermediate-CBD). Finally, we selected 12 age-matched corticobasal degeneration cases out of a cohort of 110, who had a typical gradually progressive course and reached advanced clinical stage (End-stage-CBD). Quantitative analysis showed high overall tau burden (p = 0.2) and severe nigral cell loss (p = 0.47) in both the RP-CBD and End-stage-CBD groups consistent with advanced pathological changes, while the Intermediate-CBD group (mean disease duration = 3 years) had milder changes than End-stage-CBD (p < 0.05). These findings indicated that RP-CBD cases had already developed advanced pathological changes as those observed in End-stage-CBD cases (mean disease duration = 6.7 years), but within a significantly shorter duration (2.5 years; p < 0.001). Subgroup analysis was performed to investigate the cellular patterns of tau aggregates in the anterior frontal cortex and caudate by comparing neuronal-to-astrocytic plaque ratios between six RP-CBD cases, four Intermediate-CBD and 12 age-matched End-stage-CBD. Neuronal-to-astrocytic plaque ratios of Intermediate-CBD and End-stage-CBD, but not RP-CBD, positively correlated with disease duration in both the anterior frontal cortex and caudate (p = 0.02). In contrast to the predominance of astrocytic plaques we previously reported in preclinical asymptomatic corticobasal degeneration cases, neuronal tau aggregates predominated in RP-CBD exceeding those in Intermediate-CBD (anterior frontal cortex: p < 0.001, caudate: p = 0.001) and End-stage-CBD (anterior frontal cortex: p = 0.03, caudate: p = 0.01) as demonstrated by its higher neuronal-to-astrocytic plaque ratios in both anterior frontal cortex and caudate. We did not identify any difference in age at onset, any pathogenic tau mutation or concomitant pathologies that could have contributed to the rapid progression of these RP-CBD cases. Mild TDP-43 pathology was observed in three RP-CBD cases. All RP-CBD cases were men. The MAPT H2 haplotype, known to be protective, was identified in one RP-CBD case (17%) and 8 of the matched End-stage-CBD cases (67%). We conclude that RP-CBD is a distinct aggressive variant of corticobasal degeneration with characteristic neuropathological substrates resulting in a fulminant disease process as evident both clinically and pathologically. Biological factors such as genetic modifiers likely play a pivotal role in the RP-CBD variant and should be the subject of future research.


Assuntos
Doenças dos Gânglios da Base/patologia , Doenças Neurodegenerativas/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doenças dos Gânglios da Base/metabolismo , Córtex Cerebral/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/metabolismo
6.
Brain ; 142(11): 3580-3591, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31603207

RESUMO

Impulsive compulsive behaviours in Parkinson's disease have been linked to increased dopaminergic release in the ventral striatum and excessive stimulation of dopamine D3 receptors. Thirty-one patients with impulsive compulsive behaviours and Parkinson's disease who donated their brains to the Queen Square Brain Bank for Neurological Disorders were assessed for α-synuclein neuropathological load and tyrosine hydroxylase levels in the nucleus accumbens, dorsal putamen and caudate using immunohistochemistry. Dopamine D2 and dopamine D3 receptors protein levels in the nucleus accumbens, frontal cortex and putamen were determined using western blotting. Results were compared to 29 Parkinson's disease cases without impulsive compulsive behaviours matched by age, sex, disease duration, age at Parkinson's disease onset and disease duration. The majority of patients with impulsive compulsive behaviours had dopamine dysregulation syndrome. Patients with Parkinson's disease and impulsive compulsive behaviours had lower α-synuclein load and dopamine D3 receptor levels in the nucleus accumbens. No differences were seen between groups in the other brain areas and in the analysis of tyrosine hydroxylase and dopamine D2 receptor levels. Lower α-synuclein load in the nucleus accumbens of individuals with Parkinson's disease and impulsive compulsive behaviours was confirmed on western blotting. Downregulation of the dopamine D3 receptor levels may have occurred either as a consequence of the degenerative process or of a pre-morbid trait. The lower levels of α-synuclein may have contributed to an excessive stimulation of the ventral striatum resulting in impulsive compulsive behaviours.


Assuntos
Comportamento Compulsivo/metabolismo , Comportamento Compulsivo/psicologia , Comportamento Impulsivo , Núcleo Accumbens/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/psicologia , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , alfa-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Autopsia , Comportamento Compulsivo/patologia , Feminino , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Núcleo Accumbens/patologia , Doença de Parkinson/patologia , Receptores de Dopamina D2/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
7.
Ann Neurol ; 84(4): 485-496, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30066433

RESUMO

OBJECTIVE: The basis for clinical variation related to underlying progressive supranuclear palsy (PSP) pathology is unknown. We performed a genome-wide association study (GWAS) to identify genetic determinants of PSP phenotype. METHODS: Two independent pathological and clinically diagnosed PSP cohorts were genotyped and phenotyped to create Richardson syndrome (RS) and non-RS groups. We carried out separate logistic regression GWASs to compare RS and non-RS groups and then combined datasets to carry out a whole cohort analysis (RS = 367, non-RS = 130). We validated our findings in a third cohort by referring to data from 100 deeply phenotyped cases from a recent GWAS. We assessed the expression/coexpression patterns of our identified genes and used our data to carry out gene-based association testing. RESULTS: Our lead single nucleotide polymorphism (SNP), rs564309, showed an association signal in both cohorts, reaching genome-wide significance in our whole cohort analysis (odds ratio = 5.5, 95% confidence interval = 3.2-10.0, p = 1.7 × 10-9 ). rs564309 is an intronic variant of the tripartite motif-containing protein 11 (TRIM11) gene, a component of the ubiquitin proteasome system (UPS). In our third cohort, minor allele frequencies of surrogate SNPs in high linkage disequilibrium with rs564309 replicated our findings. Gene-based association testing confirmed an association signal at TRIM11. We found that TRIM11 is predominantly expressed neuronally, in the cerebellum and basal ganglia. INTERPRETATION: Our study suggests that the TRIM11 locus is a genetic modifier of PSP phenotype and potentially adds further evidence for the UPS having a key role in tau pathology, therefore representing a target for disease-modifying therapies. Ann Neurol 2018;84:485-496.


Assuntos
Loci Gênicos/genética , Variação Genética/genética , Fenótipo , Paralisia Supranuclear Progressiva/diagnóstico , Paralisia Supranuclear Progressiva/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
9.
Brain ; 138(Pt 7): 1907-18, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25953777

RESUMO

Huntington's disease is a neurodegenerative disorder caused by an abnormal CAG repeat expansion within exon 1 of the huntingtin gene HTT. While several genetic modifiers, distinct from the Huntington's disease locus itself, have been identified as being linked to the clinical expression and progression of Huntington's disease, the exact molecular mechanisms driving its pathogenic cascade and clinical features, especially the dementia, are not fully understood. Recently the microtubule associated protein tau, MAPT, which is associated with several neurodegenerative disorders, has been implicated in Huntington's disease. We explored this association in more detail at the neuropathological, genetic and clinical level. We first investigated tau pathology by looking for the presence of hyperphosphorylated tau aggregates, co-localization of tau with mutant HTT and its oligomeric intermediates in post-mortem brain samples from patients with Huntington's disease (n = 16) compared to cases with a known tauopathy and healthy controls. Next, we undertook a genotype-phenotype analysis of a large cohort of patients with Huntington's disease (n = 960) with a particular focus on cognitive decline. We report not only on the tau pathology in the Huntington's disease brain but also the association between genetic variation in tau gene and the clinical expression and progression of the disease. We found extensive pathological inclusions containing abnormally phosphorylated tau protein that co-localized in some instances with mutant HTT. We confirmed this related to the disease process rather than age, by showing it is also present in two patients with young-onset Huntington's disease (26 and 40 years old at death). In addition we demonstrate that tau oligomers (suggested to be the most likely neurotoxic tau entity) are present in the Huntington's disease brains. Finally we highlight the clinical significance of this pathology by demonstrating that the MAPT haplotypes affect the rate of cognitive decline in a large cohort of patients with Huntington's disease. Our findings therefore highlight a novel important role of tau in the pathogenic process and clinical expression of Huntington's disease, which in turn opens up new therapeutic avenues for this incurable condition.


Assuntos
Encéfalo/patologia , Doença de Huntington/genética , Doença de Huntington/patologia , Proteínas tau/genética , Adulto , Idoso , Feminino , Imunofluorescência , Estudos de Associação Genética , Humanos , Proteína Huntingtina , Immunoblotting , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Nat Genet ; 38(9): 1032-7, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16906163

RESUMO

Recently, the application of array-based comparative genomic hybridization (array CGH) has improved rates of detection of chromosomal imbalances in individuals with mental retardation and dysmorphic features. Here, we describe three individuals with learning disability and a heterozygous deletion at chromosome 17q21.3, detected in each case by array CGH. FISH analysis demonstrated that the deletions occurred as de novo events in each individual and were between 500 kb and 650 kb in size. A recently described 900-kb inversion that suppresses recombination between ancestral H1 and H2 haplotypes encompasses the deletion. We show that, in each trio, the parent of origin of the deleted chromosome 17 carries at least one H2 chromosome. This region of 17q21.3 shows complex genomic architecture with well-described low-copy repeats (LCRs). The orientation of LCRs flanking the deleted segment in inversion heterozygotes is likely to facilitate the generation of this microdeletion by means of non-allelic homologous recombination.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 17 , Deficiências do Desenvolvimento/genética , Deficiências da Aprendizagem/genética , Proteínas tau/genética , Adolescente , Adulto , Pré-Escolar , Inversão Cromossômica , Feminino , Marcadores Genéticos , Haplótipos , Heterozigoto , Humanos , Hibridização in Situ Fluorescente , Masculino , Hibridização de Ácido Nucleico , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único , Sequências Repetitivas de Ácido Nucleico
11.
Hum Mol Genet ; 21(18): 4094-103, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22723018

RESUMO

The MAPT (microtubule-associated protein tau) locus is one of the most remarkable in neurogenetics due not only to its involvement in multiple neurodegenerative disorders, including progressive supranuclear palsy, corticobasal degeneration, Parksinson's disease and possibly Alzheimer's disease, but also due its genetic evolution and complex alternative splicing features which are, to some extent, linked and so all the more intriguing. Therefore, obtaining robust information regarding the expression, splicing and genetic regulation of this gene within the human brain is of immense importance. In this study, we used 2011 brain samples originating from 439 individuals to provide the most reliable and coherent information on the regional expression, splicing and regulation of MAPT available to date. We found significant regional variation in mRNA expression and splicing of MAPT within the human brain. Furthermore, at the gene level, the regional distribution of mRNA expression and total tau protein expression levels were largely in agreement, appearing to be highly correlated. Finally and most importantly, we show that while the reported H1/H2 association with gene level expression is likely to be due to a technical artefact, this polymorphism is associated with the expression of exon 3-containing isoforms in human brain. These findings would suggest that contrary to the prevailing view, genetic risk factors for neurodegenerative diseases at the MAPT locus are likely to operate by changing mRNA splicing in different brain regions, as opposed to the overall expression of the MAPT gene.


Assuntos
Lobo Frontal/metabolismo , Regulação da Expressão Gênica , Tauopatias/genética , Proteínas tau/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Haplótipos , Humanos , Mutação INDEL , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Locos de Características Quantitativas , Sítios de Splice de RNA , Tauopatias/metabolismo , Transcrição Gênica , Adulto Jovem , Proteínas tau/metabolismo
12.
Neurocase ; 20(6): 684-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23998300

RESUMO

We report a case of frontotemporal dementia caused by a novel MAPT mutation (Q351R) with a remarkably long amnestic presentation mimicking familial Alzheimer's disease. Longitudinal clinical, neuropsychological and imaging data provide convergent evidence for predominantly bilateral anterior medial temporal lobe involvement consistent with previously established neuroanatomical signatures of MAPT mutations. This case supports the notion that the neural network affected in MAPT mutations is determined to a large extent by the underlying molecular pathology. We discuss the diagnostic significance of anomia in the context of atypical amnesia and the impact of impaired episodic and semantic memory systems on autobiographical memory.


Assuntos
Amnésia/complicações , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Mutação , Proteínas tau/genética , Doença de Alzheimer/diagnóstico , Anomia/complicações , Encéfalo/patologia , Progressão da Doença , Feminino , Demência Frontotemporal/complicações , Hipocampo/patologia , Humanos , Pessoa de Meia-Idade
13.
medRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234807

RESUMO

Background: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73×10-3) in PSP. Conclusions: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.

14.
medRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464214

RESUMO

Importance: The chromosome 17q21.31 region, containing a 900 Kb inversion that defines H1 and H2 haplotypes, represents the strongest genetic risk locus in progressive supranuclear palsy (PSP). In addition to H1 and H2, various structural forms of 17q21.31, characterized by the copy number of α, ß, and γ duplications, have been identified. However, the specific effect of each structural form on the risk of PSP has never been evaluated in a large cohort study. Objective: To assess the association of different structural forms of 17q.21.31, defined by the copy numbers of α, ß, and γ duplications, with the risk of PSP and MAPT sub-haplotypes. Design setting and participants: Utilizing whole genome sequencing data of 1,684 (1,386 autopsy confirmed) individuals with PSP and 2,392 control subjects, a case-control study was conducted to investigate the association of copy numbers of α, ß, and γ duplications and structural forms of 17q21.31 with the risk of PSP. All study subjects were selected from the Alzheimer's Disease Sequencing Project (ADSP) Umbrella NG00067.v7. Data were analyzed between March 2022 and November 2023. Main outcomes and measures: The main outcomes were the risk (odds ratios [ORs]) for PSP with 95% CIs. Risks for PSP were evaluated by logistic regression models. Results: The copy numbers of α and ß were associated with the risk of PSP only due to their correlation with H1 and H2, while the copy number of γ was independently associated with the increased risk of PSP. Each additional duplication of γ was associated with 1.10 (95% CI, 1.04-1.17; P = 0.0018) fold of increased risk of PSP when conditioning H1 and H2. For the H1 haplotype, addition γ duplications displayed a higher odds ratio for PSP: the odds ratio increases from 1.21 (95%CI 1.10-1.33, P = 5.47 × 10-5) for H1ß1γ1 to 1.29 (95%CI 1.16-1.43, P = 1.35 × 10-6) for H1ß1γ2, 1.45 (95%CI 1.27-1.65, P = 3.94 × 10-8) for H1ß1γ3, and 1.57 (95%CI 1.10-2.26, P = 1.35 × 10-2) for H1ß1γ4. Moreover, H1ß1γ3 is in linkage disequilibrium with H1c (R2 = 0.31), a widely recognized MAPT sub-haplotype associated with increased risk of PSP. The proportion of MAPT sub-haplotypes associated with increased risk of PSP (i.e., H1c, H1d, H1g, H1o, and H1h) increased from 34% in H1ß1γ1 to 77% in H1ß1γ4. Conclusions and relevance: This study revealed that the copy number of γ was associated with the risk of PSP independently from H1 and H2. The H1 haplotype with more γ duplications showed a higher odds ratio for PSP and were associated with MAPT sub-haplotypes with increased risk of PSP. These findings expand our understanding of how the complex structure at 17q21.31 affect the risk of PSP.

15.
Acta Neuropathol Commun ; 11(1): 106, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386505

RESUMO

Neurodegenerative diseases encompass a heterogeneous group of conditions characterised by the progressive degeneration of the structure and function of the central or peripheral nervous systems. The pathogenic mechanisms underlying these diseases are not fully understood. However, a central feature consists of regional aggregation of proteins in the brain, such as the accumulation of ß-amyloid plaques in Alzheimer's disease (AD), inclusions of hyperphosphorylated microtubule-binding tau in AD and other tauopathies, or inclusions containing α-synuclein in Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Various pathogenic mechanisms are thought to contribute to disease, and an increasing number of studies implicate dysfunction of oligodendrocytes (the myelin producing cells of the central nervous system) and myelin loss. Aberrant DNA methylation, the most widely studied epigenetic modification, has been associated with many neurodegenerative diseases, including AD, PD, DLB and MSA, and recent findings highlight aberrant DNA methylation in oligodendrocyte/myelin-related genes. Here we briefly review the evidence showing that changes to oligodendrocytes and myelin are key in neurodegeneration, and explore the relevance of DNA methylation in oligodendrocyte (dys)function. As DNA methylation is reversible, elucidating its involvement in pathogenic mechanisms of neurodegenerative diseases and in dysfunction of specific cell-types such as oligodendrocytes may bring opportunities for therapeutic interventions for these diseases.


Assuntos
Doença de Alzheimer , Atrofia de Múltiplos Sistemas , Doença de Parkinson , Humanos , Metilação de DNA , Oligodendroglia , Bainha de Mielina , Epigênese Genética , Doença de Alzheimer/genética , Placa Amiloide
16.
Cell Biosci ; 13(1): 174, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723591

RESUMO

OBJECTIVES: Although accumulation of misfolded tau species has been shown to predict cognitive decline in patients with Alzheimer's disease (AD) and other tauopathies but with the remarkable diversity of clinical manifestations, neuropathology profiles, and time courses of disease progression remaining unexplained by current genetic data. We considered the diversity of misfolded tau conformers present in individual AD cases as an underlying driver of the phenotypic variations of AD and progressive loss of synapses. METHODS: To model the mechanism of tau propagation and synaptic toxicity of distinct tau conformers, we inoculated wild-type primary mouse neurons with structurally characterized Sarkosyl-insoluble tau isolates from the frontal cortex of six AD cases and monitored the impact for fourteen days. We analyzed the accumulation rate, tau isoform ratio, and conformational characteristics of de novo-induced tau aggregates with conformationally sensitive immunoassays, and the dynamics of synapse formation, maintenance, and their loss using a panel of pre-and post-synaptic markers. RESULTS: At the same concentrations of tau, the different AD tau isolates induced accumulation of misfolded predominantly 4-repeat tau aggregates at different rates in mature neurons, and demonstrated distinct conformational characteristics corresponding to the original AD brain tau. The time-course of the formation of misfolded tau aggregates and colocalization correlated with significant loss of synapses in tau-inoculated cell cultures and the reduction of synaptic connections implicated the disruption of postsynaptic compartment as an early event. CONCLUSIONS: The data obtained with mature neurons expressing physiological levels and adult isoforms of tau protein demonstrate markedly different time courses of endogenous tau misfolding and differential patterns of post-synaptic alterations. These and previous biophysical data argue for an ensemble of various misfolded tau aggregates in individual AD brains and template propagation of their homologous conformations in neurons with different rates and primarily postsynaptic interactors. Modeling tau aggregation in mature differentiated neurons provides a platform for investigating divergent molecular mechanisms of tau strain propagation and for identifying common structural features of misfolded tau and critical interactors for new therapeutic targets and approaches in AD.

17.
J Neurochem ; 123(3): 396-405, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22862741

RESUMO

Characteristic tau isoform composition of the insoluble fibrillar tau inclusions define tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and frontotemporal dementia with parkinsonism linked to chromosome 17/frontotemporal lobar degeneration-tau (FTDP-17/FTLD-tau). Exon 10 splicing mutations in the tau gene, MAPT, in familial FTDP-17 cause elevation of tau isoforms with four microtubule-binding repeat domains (4R-tau) compared to those with three repeats (3R-tau). On the basis of two well-characterised monoclonal antibodies against 3R- and 4R-tau, we developed novel, sensitive immuno-PCR assays for measuring the trace amounts of these isoforms in CSF. This was with the aim of assessing if CSF tau isoform changes reflect the pathological changes in tau isoform homeostasis in the degenerative brain and if these would be relevant for differential clinical diagnosis. Initial analysis of clinical CSF samples of PSP (n = 46), corticobasal syndrome (CBS; n = 22), AD (n = 11), Parkinson's disease with dementia (PDD; n = 16) and 35 controls revealed selective decreases of immunoreactive 4R-tau in CSF of PSP and AD patients compared with controls, and lower 4R-tau levels in AD compared with PDD. These decreases could be related to the disease-specific conformational masking of the RD4-binding epitope because of abnormal folding and/or aggregation of the 4R-tau isoforms in tauopathies or increased sequestration of the 4R-tau isoforms in brain tau pathology.


Assuntos
Imunoensaio/métodos , Reação em Cadeia da Polimerase/métodos , Sequências Repetitivas de Aminoácidos , Tauopatias/metabolismo , Proteínas tau/líquido cefalorraquidiano , Idoso , Estudos de Coortes , Homeostase/genética , Homeostase/imunologia , Humanos , Imunoensaio/normas , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/normas , Isoformas de Proteínas/líquido cefalorraquidiano , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Sequências Repetitivas de Aminoácidos/genética , Sequências Repetitivas de Aminoácidos/imunologia , Reprodutibilidade dos Testes , Tauopatias/líquido cefalorraquidiano , Tauopatias/genética , Proteínas tau/genética , Proteínas tau/imunologia
18.
Brain ; 134(Pt 5): 1493-1505, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21596773

RESUMO

The relative importance of Lewy- and Alzheimer-type pathologies to dementia in Parkinson's disease remains unclear. We have examined the combined associations of α-synuclein, tau and amyloid-ß accumulation in 56 pathologically confirmed Parkinson's disease cases, 29 of whom had developed dementia. Cortical and subcortical amyloid-ß scores were obtained, while tau and α-synuclein pathologies were rated according to the respective Braak stages. Additionally, cortical Lewy body and Lewy neurite scores were determined and Lewy body densities were generated using morphometry. Non-parametric statistics, together with regression models, receiver-operating characteristic curves and survival analyses were applied. Cortical and striatal amyloid-ß scores, Braak tau stages, cortical Lewy body, Lewy neurite scores and Lewy body densities, but not Braak α-synuclein stages, were all significantly greater in the Parkinson's disease-dementia group (P<0.05), with all the pathologies showing a significant positive correlation to each other (P<0.05). A combination of pathologies [area under the receiver-operating characteristic curve=0.95 (0.88-1.00); P<0.0001] was a better predictor of dementia than the severity of any single pathology. Additionally, cortical amyloid-ß scores (r=-0.62; P=0.043) and Braak tau stages (r=-0.52; P=0.028), but not Lewy body scores (r=-0.25; P=0.41) or Braak α-synuclein stages (r=-0.44; P=0.13), significantly correlated with mini-mental state examination scores in the subset of cases with this information available within the last year of life (n=15). High cortical amyloid-ß score (P=0.017) along with an older age at onset (P=0.001) were associated with a shorter time-to-dementia period. A combination of Lewy- and Alzheimer-type pathologies is a robust pathological correlate of dementia in Parkinson's disease, with quantitative and semi-quantitative assessment of Lewy pathology being more informative than Braak α-synuclein stages. Cortical amyloid-ß and age at disease onset seem to determine the rate to dementia.


Assuntos
Doença de Alzheimer/complicações , Demência/complicações , Doença por Corpos de Lewy/complicações , Doença de Parkinson/complicações , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Demência/genética , Feminino , Humanos , Doença por Corpos de Lewy/genética , Masculino , Entrevista Psiquiátrica Padronizada , Doença de Parkinson/genética , Curva ROC , Estatística como Assunto , alfa-Sinucleína/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
19.
Brain ; 134(Pt 9): 2565-81, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21908872

RESUMO

Relating clinical symptoms to neuroanatomical profiles of brain damage and ultimately to tissue pathology is a key challenge in the field of neurodegenerative disease and particularly relevant to the heterogeneous disorders that comprise the frontotemporal lobar degeneration spectrum. Here we present a retrospective analysis of clinical, neuropsychological and neuroimaging (volumetric and voxel-based morphometric) features in a pathologically ascertained cohort of 95 cases of frontotemporal lobar degeneration classified according to contemporary neuropathological criteria. Forty-eight cases (51%) had TDP-43 pathology, 42 (44%) had tau pathology and five (5%) had fused-in-sarcoma pathology. Certain relatively specific clinicopathological associations were identified. Semantic dementia was predominantly associated with TDP-43 type C pathology; frontotemporal dementia and motoneuron disease with TDP-43 type B pathology; young-onset behavioural variant frontotemporal dementia with FUS pathology; and the progressive supranuclear palsy syndrome with progressive supranuclear palsy pathology. Progressive non-fluent aphasia was most commonly associated with tau pathology. However, the most common clinical syndrome (behavioural variant frontotemporal dementia) was pathologically heterogeneous; while pathologically proven Pick's disease and corticobasal degeneration were clinically heterogeneous, and TDP-43 type A pathology was associated with similar clinical features in cases with and without progranulin mutations. Volumetric magnetic resonance imaging, voxel-based morphometry and cluster analyses of the pathological groups here suggested a neuroanatomical framework underpinning this clinical and pathological diversity. Frontotemporal lobar degeneration-associated pathologies segregated based on their cerebral atrophy profiles, according to the following scheme: asymmetric, relatively localized (predominantly temporal lobe) atrophy (TDP-43 type C); relatively symmetric, relatively localized (predominantly temporal lobe) atrophy (microtubule-associated protein tau mutations); strongly asymmetric, distributed atrophy (Pick's disease); relatively symmetric, predominantly extratemporal atrophy (corticobasal degeneration, fused-in-sarcoma pathology). TDP-43 type A pathology was associated with substantial individual variation; however, within this group progranulin mutations were associated with strongly asymmetric, distributed hemispheric atrophy. We interpret the findings in terms of emerging network models of neurodegenerative disease: the neuroanatomical specificity of particular frontotemporal lobar degeneration pathologies may depend on an interaction of disease-specific and network-specific factors.


Assuntos
Degeneração Lobar Frontotemporal/patologia , Degeneração Lobar Frontotemporal/fisiopatologia , Adulto , Idoso , Encéfalo/patologia , Encéfalo/fisiopatologia , Análise por Conglomerados , Estudos de Coortes , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença de Pick/patologia , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Estudos Retrospectivos , Proteínas tau/genética , Proteínas tau/metabolismo
20.
Sci Transl Med ; 14(626): eabg0253, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34985969

RESUMO

Although genetic factors play a main role in determining the risk of developing Alzheimer's disease (AD), they do not explain extensive spectrum of clinicopathological phenotypes. Deposits of aggregated TAU proteins are one of the main predictors of cognitive decline in AD. We investigated the hypothesis that variabilities in AD progression could be due to diverse structural assemblies (strains) of TAU protein. Using sensitive biophysical methods in 40 patients with AD and markedly different disease durations, we identified populations of distinct TAU particles that differed in size, structural organization, and replication rate in vitro and in cell assay. The rapidly replicating, distinctly misfolded TAU conformers found in rapidly progressive AD were composed of ~80% misfolded four-repeat (4R) TAU and ~20% of misfolded 3R TAU isoform with the same conformational signatures. These biophysical observations suggest that distinctly misfolded population of 4R TAU conformers drive the rapid decline in AD and imply that effective therapeutic strategies might need to consider not a singular species but a cloud of differently misfolded TAU conformers.


Assuntos
Doença de Alzheimer , Proteínas tau , Doença de Alzheimer/patologia , Humanos , Isoformas de Proteínas/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA