Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chromosome Res ; 25(3-4): 313-325, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28916913

RESUMO

Despite their ubiquitous incidence, little is known about the chromosomal distribution of long interspersed elements (LINEs) in mammalian genomes. Phyllostomid bats, characterized by lineages with distinct trends of chromosomal evolution coupled with remarkable ecological and taxonomic diversity, represent good models to understand how these repetitive sequences contribute to the evolution of genome architecture and its link to lineage diversification. To test the hypothesis that LINE-1 sequences were important modifiers of bat genome architecture, we characterized the distribution of LINE-1-derived sequences on genomes of 13 phyllostomid species within a phylogenetic framework. We found massive accumulation of LINE-1 elements in the centromeres of most species: a rare phenomenon on mammalian genomes. We hypothesize that expansion of these elements has occurred early in the radiation of phyllostomids and recurred episodically. LINE-1 expansions on centromeric heterochromatin probably spurred chromosomal change before the radiation of phyllostomids into the extant 11 subfamilies and contributed to the high degree of karyotypic variation observed among different lineages. Understanding centromere architecture in a variety of taxa promises to explain how lineage-specific changes on centromere structure can contribute to karyotypic diversity while not disrupting functional constraints for proper cell division.


Assuntos
Centrômero/genética , Quirópteros/genética , Cromossomos de Mamíferos , Evolução Molecular , Elementos Nucleotídeos Longos e Dispersos , Animais , Heterocromatina , Hibridização in Situ Fluorescente , Cariótipo , Filogenia , Sequências Repetitivas de Ácido Nucleico , Retroelementos , Análise de Sequência de DNA
2.
Genet Mol Biol ; 32(4): 748-52, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21637449

RESUMO

Phyllostomidae comprises the most diverse family of neotropical bats, its wide range of morphological features leading to uncertainty regarding phylogenetic relationships. Seeing that cytogenetics is one of the fields capable of providing support for currently adopted classifications through the use of several markers, a comparative analysis between two Phyllostomidae species was undertaken in the present study, with a view to supplying datasets for the further establishment of Phyllostomidae evolutionary relationships. Karyotypes of Lonchorhina aurita (2n = 32; FN = 60) and Trachops cirrhosus (2n = 30; FN = 56) were analyzed by G- and C-banding, silver nitrate staining (Ag-NOR) and base-specific fluorochromes. Chromosomal data obtained for both species are in agreement with those previously described, except for X chromosome morphology in T. cirrhosus, hence indicating chromosomal geographical variation in this species. A comparison of G-banding permitted the identification of homeologies in nearly all the chromosomes. Furthermore, C-banding and Ag-NOR patterns were comparable to what has already been observed in the family. In both species CMA(3) /DA/DAPI staining revealed an R-banding-like pattern with CMA (3) , whereas DAPI showed uniform staining in all the chromosomes. Fluorochrome staining patterns for pericentromeric constitutive heterochromatin (CH) regions, as well as for nucleolar organizing regions (NORs), indicated heterogeneity regarding these sequences among Phyllostomidae species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA