Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biochim Biophys Acta ; 1842(1): 32-43, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24161538

RESUMO

Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT-loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT-loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (p<0.01) and IL-1ß (p<0.01) and decreased the inflammatory infiltrate at day 3 post-wounding (inflammatory phase). After complete healing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (p<0.05) which significantly increased fibroblast migration and collagen (collagen type I, alpha 2 (COL1A2) and collagen type III, alpha 1 (COL3A1)) expression and deposition. These results suggest that collagen-based dressings can be an effective support for NT release into diabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Bandagens , Diabetes Mellitus Experimental/metabolismo , Neurotensina/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Movimento Celular , Colágeno/química , Colágeno Tipo I/genética , Colágeno Tipo I/imunologia , Colágeno Tipo III/genética , Colágeno Tipo III/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/imunologia , Inflamação/patologia , Inflamação/prevenção & controle , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Pele/imunologia , Pele/lesões , Pele/metabolismo , Estreptozocina , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
2.
J Mater Sci Mater Med ; 25(8): 2017-26, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24854674

RESUMO

The surface properties of a material in combination with the mechanical properties are responsible for the material performance in a biological environment as well as the behaviour of the cells which contact with the material. Surface properties such as chemical, physical, biological play an important role in the biomaterials filed. In this work, the surface of a thermoplastic polyurethane film (Elastollan(®)1180A50) was tailored with sulfonic groups by grafting [2-(methacryloxyl)ethyl]-dimethyl-(3-sulfopropyl)-ammonium hydroxide (SB) after a previous surface activation either by Argon plasma or by ultra-violet irradiation. This surface modification had the purpose of improving cell adhesion in order to develop a biosensor able to monitor cell behaviour. The surfaces were characterized by X-ray photoelectron spectroscopy, by atomic force microscopy and by contact angle measurements in order to evaluate the efficiency of the modification. Additionally, blood compatibility studies and cell adhesion tests with human bone marrow cells were performed. These methods allowed the grafting of SB and the results indicate that a higher density of grafting was achieved with previous surface plasma treatment than with UV irradiation. However, for both techniques, the presence of SB functional groups led to a decrease of hydrophobicity and roughness of the surface, together with an improvement of the materials biological performance.


Assuntos
Técnicas Biossensoriais , Células da Medula Óssea/citologia , Adesão Celular , Poliuretanos/química , Ácidos Sulfônicos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Trombose
3.
Int J Pharm ; 662: 124546, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39097154

RESUMO

Biopolymers application in biomedical areas has been limited due to the physicochemical degradation that occurs using conventional processing/sterilization methods (e.g., steam heat, γ-radiation, ethylene oxide). Aiming to avoid/minimize degradation and preserve their properties, supercritical carbon dioxide (scCO2) has been proposed as an alternative sterilization method for such materials. ScCO2 can simultaneously be used as a drying method to produce aerogels (i) and sterilize them (ii). However, a solvent exchange is required to prepare the alcogel from hydrogel, achievable through high-pressure solvent exchange (HPSE) (iii). This study integrated three processes: HPSE, scCO2 drying, and sterilization to prepare alginate-gelatine sterilized aerogels. Two scCO2 sterilization methods were tested. Results showed that sterilization did not compromise the aerogels' chemical, thermal and swelling properties. Conversely, Young's Modulus increased, and BET surface area decreased, due to the structural changes caused by the fast pressurization/depressurization rates applied during sterilization. Regarding the sterilization efficiency, results showed a reduction in contamination throughout the process, achieving a SAL of 10-4. The sterilized aerogels were non-cytotoxic in vitro and showed improved wound-healing properties. The innovative integrated process produced decontaminated/sterile and ready-to-use aerogels reducing process time by 75 %, from 2 days up to 12 h without compromising the aerogel's properties.


Assuntos
Alginatos , Dióxido de Carbono , Gelatina , Géis , Esterilização , Alginatos/química , Gelatina/química , Esterilização/métodos , Dióxido de Carbono/química , Géis/química , Animais , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Ácido Glucurônico/química , Solventes/química , Camundongos , Ácidos Hexurônicos/química
4.
Food Chem ; 441: 138338, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38194794

RESUMO

This study focuses on the characterisation and incorporation of Moringa oleifera leaf powder (MOP) from Luanda (Angola) and its extract (MOE) in fortified chocolate mousse. Dark green (DG) leaves presented superior nutritional values compared to other leaves. DG contained a higher concentration of mineral salts (10 ± 1 mg/100 g of dry leaves), phenolic compounds (267 ± 4 mg GAE/g), vitamins (1.9 ± 0.2 mg/g of dry extract) and strong antioxidant capacity (IC50, 115 ± 8 µg/mL). Therefore, DG leaves were used to fortify the chocolate mousse. The leaves were prepared in three samples: control, 2 % MOP (w/w) and 2 % MOE (v/v). Textural and rheological analysis of chocolate mousse samples revealed a pseudoplastic profile for all samples, with decreased texture attributes and viscosity due to the incorporation. The sensory evaluation demonstrated that MOP and MOE samples presented 93 % and 88 % resemblance to the original product regarding general acceptance, respectively.


Assuntos
Chocolate , Moringa oleifera , Extratos Vegetais , Pós , Folhas de Planta , Vitaminas
5.
Int J Pharm ; 646: 123451, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37774759

RESUMO

Biopolymers present ideal properties to be used in wound dressing solutions. By mixing two oppositely charged macromolecules it is possible to form polyelectrolyte complex (PEC) based cryogels using lyophilization. Their application in the biomedical field is limited due to their sterilization requirements, as conventional methods compromise their physicochemical properties. ScCO2 appears as an alternative method for decontamination. This work assessed several cryogel PEC formulations, chitosan-pectin, gelatine-xanthan gum and alginate-gelatine. PEC formation was confirmed by FTIR and rheological analysis. While steam sterilization compromised cryogels' chemical and morphological properties, decontamination with scCO2 proved to be a promising method for decontamination of PEC-cryogels, because, similarly to what is observed with hydrogen peroxide, it does not compromise their physicochemical properties.

6.
Pharmaceutics ; 15(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37111567

RESUMO

The efficiency of photodynamic therapy is often limited by the scarcity of oxygen at the target site. To address this problem, this work proposes the development of a new nanosystem for antimicrobial photodynamic therapy applications (aPDT) where the natural-origin photosensitizer curcumin (CUR) is immersed in an oxygen-rich environment. Inspired by the perfluorocarbon-based photosensitizer/O2 nanocarriers reported in the literature, we developed a new type of silica nanocapsule containing curcumin dissolved in three hydrophobic ionic liquids (ILs) with high oxygen dissolving capacities. The nanocapsules (CUR-IL@ncSi), prepared by an original oil-in-water microemulsion/sol-gel method, had a high IL content and exhibited clear capacities to dissolve and release significant amounts of oxygen, as demonstrated by deoxygenation/oxygenation studies. The ability of CUR-IL solutions and of CUR-IL@ncSi to generate singlet oxygen (1O2) upon irradiation was confirmed by the detection of 1O2 phosphorescence at 1275 nm. Furthermore, the enhanced capacities of oxygenated CUR-IL@ncSi suspensions to generate 1O2 upon irradiation with blue light were confirmed by an indirect spectrophotometric method. Finally, preliminary microbiological tests using CUR-IL@ncSi incorporated into gelatin films showed the occurrence of antimicrobial effects due to photodynamic inactivation, with their relative efficiencies depending on the specific IL in which curcumin was dissolved. Considering these results, CUR-IL@ncSi has the potential to be used in the future to develop biomedical products with enhanced oxygenation and aPDT capacities.

7.
Int J Pharm ; 634: 122671, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736965

RESUMO

Hydrogels are extensively used in the biomedical field, as drug delivery systems, wound dressings, contact lenses or as scaffolds for tissue engineering. Due to their polymeric nature and the presence of high amounts of water in their structure, hydrogels generally present high sensitivity to terminal sterilization. The establishment of an efficient sterilization protocol that does not compromise the functional properties of the hydrogels is one of the challenges faced by researchers when developing a hydrogel for a specific application. Yet, until very recently this aspect was largely ignored in the literature. The present paper reviews the state of literature concerning hydrogels sterilization, compiling the main findings. Conventional terminal sterilization methods (heat sterilization, radiation sterilization, and gas sterilization) as well as emerging sterilization techniques (ozone, supercritical carbon dioxide) are covered. Considerations about aseptic processing are also included. Additionally, and as a framework, hydrogels' polymeric materials, types of networks, and main biomedical applications are summarily described.


Assuntos
Lentes de Contato , Hidrogéis , Hidrogéis/química , Esterilização/métodos , Polímeros/química , Água , Engenharia Tecidual
8.
Front Plant Sci ; 14: 1191923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342130

RESUMO

The root-knot nematode (RKN) Meloidogyne luci presents a threat to the production of several important crops. This nematode species was added to the European Plant Protection Organization Alert list in 2017. The scarce availability of efficient nematicides to control RKN and the phasing out of nematicides from the market have intensified the search for alternatives, such as phytochemicals with bionematicidal properties. The nematicidal activity of 1,4-naphthoquinone (1,4-NTQ) against M. luci has been demonstrated; however, knowledge of the potential mode(s) of action of this compound is still scarce. In this study, the transcriptome profile of M. luci second-stage juveniles (J2), the infective stage, in response to 1,4-NTQ exposure was determined by RNA-seq to identify genes and pathways that might be involved in 1,4-NTQ's mode(s) of action. Control treatments, consisting of nematodes exposed to Tween® 80 (1,4-NTQ solvent) and to water, were included in the analysis. A large set of differentially expressed genes (DEGs) was found among the three tested conditions, and a high number of downregulated genes were found between 1,4-NTQ treatment and water control, reflecting the inhibitory effect of this compound on M. luci, with a great impact on processes related to translation (ribosome pathway). Several other nematode gene networks and metabolic pathways affected by 1,4-NTQ were also identified, clarifying the possible mode of action of this promising bionematicide.

9.
Front Plant Sci ; 13: 867803, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656011

RESUMO

The scarce availability of efficient and eco-friendly nematicides to control root-knot nematodes (RKN), Meloidogyne spp., has encouraged research toward the development of bionematicides. Naphthoquinones, juglone (JUG) and 1,4-naphthoquinone (1,4-NTQ), are being explored as alternatives to synthetic nematicides to control RKN. This study expands the knowledge on the effects of these natural compounds toward M. luci life cycle (mortality, hatching, penetration, reproduction). M. luci second-stage juveniles (J2)/eggs were exposed to each compound (250, 150, 100, 50, and 20 ppm) to monitor nematode mortality and hatching during 72 h and 15 days, respectively. Tomato seedlings were then inoculated with 200 J2, which had been exposed to JUG/1,4-NTQ for 3 days. The number of nematodes inside the roots was determined at 3 days after inoculation, and the final population density was assessed at 45 days after inoculation. Moreover, the potential mode of action of JUG/1,4-NTQ was investigated for the first time on RKN, through the assessment of reactive oxygen species (ROS) generation, acetylcholinesterase (AChE) in vitro inhibitory activity and expression analysis of ache and glutathione-S-transferase (gst) genes. 1,4-NTQ was the most active compound, causing ≥50% J2 mortality at 250 ppm, within 24 h. At 20 and 50 ppm, hatching was reduced by ≈50% for both compounds. JUG showed a greater effect on M. luci penetration and reproduction, decreasing infection by ≈80% (50 ppm) on tomato plants. However, 1,4-NTQ-induced generation of ROS and nematode vacuolization was observed. Our study confirms that JUG/1,4-NTQ are promising nematicidal compounds, and new knowledge on their physiological impacts on Meloidogyne was provided to open new avenues for the development of innovative sustainable nematicides.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35682153

RESUMO

The need to secure public health and mitigate the environmental impact associated with the massified use of respiratory protective devices (RPD) has been raising awareness for the safe reuse of decontaminated masks by individuals and organizations. Among the decontamination treatments proposed, in this work, three methods with the potential to be adopted by households and organizations of different sizes were analysed: contact with nebulized hydrogen peroxide (H2O2); immersion in commercial bleach (NaClO) (sodium hypochlorite, 0.1% p/v); and contact with steam in microwave steam-sanitizing bags (steam bag). Their decontamination effectiveness was assessed using reference microorganisms following international standards (issued by ISO and FDA). Furthermore, the impact on filtration efficiency, air permeability and several physicochemical and structural characteristics of the masks, were evaluated for untreated masks and after 1, 5 and 10 cycles of treatment. Three types of RPD were analysed: surgical, KN95, and cloth masks. Results demonstrated that the H2O2 protocol sterilized KN95 and surgical masks (reduction of >6 log10 CFUs) and disinfected cloth masks (reduction of >3 log10 CFUs). The NaClO protocol sterilized surgical masks, and disinfected KN95 and cloth masks. Steam bags sterilized KN95 and disinfected surgical and cloth masks. No relevant impact was observed on filtration efficiency.


Assuntos
Descontaminação , Dispositivos de Proteção Respiratória , Descontaminação/métodos , Filtração , Humanos , Peróxido de Hidrogênio , Permeabilidade , Vapor
11.
J Control Release ; 343: 469-481, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131370

RESUMO

Retinal ganglion cell (RGC) loss underlies several conditions which give rise to significant visual compromise, including glaucoma and ischaemic optic neuropathies. Neuroprotection of RGCs is a clinical well-defined unmet need in these diseases, and adenosine A3 receptor (A3R) activation emerges as a therapeutic pharmacological approach to protect RGCs. A porous biodegradable intraocular implant loaded with 2-Cl-IB-MECA (selective A3R agonist) was used as a strategy to protect RGCs. Drug-loaded PCL implants released 2-Cl-IB-MECA for an extended period and the released 2-Cl-IB-MECA limited glutamate-evoked calcium (Ca2+) rise in RGCs. Retinal thinning due to transient ischemia was not prevented by 2-Cl-IB-MECA-PCL implant. However, 2-Cl-IB-MECA-PCL implants decreased retinal cell death, promoted the survival of RGCs, preserved optic nerve structure and anterograde axonal transport. We further demonstrated that 2-Cl-IB-MECA-loaded PCL implants were able to enhance RGC function that was compromised by transient ischemia. Taking into consideration the beneficial effects afforded by 2-Cl-IB-MECA released from the PCL implant, this can be envisaged a good therapeutic strategy to protect RGCs.


Assuntos
Agonistas do Receptor A3 de Adenosina , Células Ganglionares da Retina , Agonistas do Receptor A3 de Adenosina/farmacologia , Humanos , Isquemia/tratamento farmacológico , Receptor A3 de Adenosina/metabolismo , Retina/metabolismo
12.
Mater Sci Eng C Mater Biol Appl ; 121: 111798, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579445

RESUMO

In this work, electro-responsive chitosan/ionic liquid-based hydrogels were synthetized for the first time, envisaging the development of iontophoretic biomaterials for the controlled release/permeation of charged biomolecules. The main goal was to enhance and tune the physicochemical, mechanical, electro-responsive, and haemostatic properties of chitosan-based biomaterials to obtain multi-stimuli responsive (responsive to electrical current, ionic strength, and pH) and mechanically stable hydrogels. To accomplish this objective, polycationic semi-interpenetrating copolymer networks (semi-IPN) were prepared by combining chitosan (CS) and ionic liquid-based polymers and copolymers, namely poly(1-butyl-3-vinylimidazolium chloride) (poly(BVImCl)) and poly(2-hydroxymethyl methacrylate-co-1-butyl-3-vinylimidazolium chloride) (poly(HEMA-co-BVImCl)). Results show that prepared semi-IPNs presented high mechanical stability and were positively charged over a broad pH range, including basic pH. Semi-IPNs also presented faster permeation and release rates of lidocaine hydrochloride (LH), under external electrical stimulus (0.56 mA/cm2) in aqueous media at 32 °C. The kinetic release constants and the LH diffusion coefficients measured under electrical stimulus were ~1.5 and > 2.7 times higher for those measured for passive release. Finally, both semi-IPNs were non-haemolytic (haemolytic index ≤0.2%) and showed strong haemostatic activity (blood clotting index of ~12 ± 1%). Altogether, these results show that the prepared polycationic semi-IPN hydrogels presented advantageous mechanical, responsive and biological properties that enable them to be potentially employed for the design of new, safer, and advanced stimuli-responsive biomaterials for several biomedical applications such as haemostatic and wound healing dressings and iontophoretic patches.


Assuntos
Quitosana , Líquidos Iônicos , Bandagens , Materiais Biocompatíveis/farmacologia , Hidrogéis , Concentração de Íons de Hidrogênio , Polímeros
13.
Antioxidants (Basel) ; 10(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34573101

RESUMO

Bravo de Esmolfe (BE) is a traditional Portuguese apple highly appreciated by consumers due to its peculiar flavor and aroma. This apple contains higher concentration of phenolic compounds than other cultivars and is thus considered a rich source of antioxidants. Its sensorial and functional properties have attracted farmers' associations to increase BE production. However, a large quantity of apples is wasted due to storage/transportation procedures that impact BE's quality attributes. In this work, we applied high-pressure extraction methodologies to generate antioxidant-rich fractions from BE residues aiming at adding high value to these agro-food by-products. We performed a first extraction step using supercritical CO2, followed by a second extraction step where different CO2 + ethanol mixtures (10-100% v/v) were tested. All experiments were carried out at 25 MPa and 50 °C. Extracts were characterized in terms of global yield, phenolic content and antioxidant activity using chemical (ORAC, HOSC, HORAC) and cell-based assays (CAA). We demonstrated that, although the pressurized 100% ethanol condition promoted the highest recovery of phenolic compounds (509 ± 8 mg GAE/100 g BE residues), the extract obtained with 40% ethanol presented the highest CAA (1.50 ± 0.24 µmol QE/g dw) and ORAC (285 ± 16 µmol TEAC/g dw), as well as HOSC and HORAC values, which correlated with its content of epicatechin and procyanidin B2. Noteworthy, this fraction inhibited free radical production in human neurospheroids derived from NT2 cells, a robust 3D cell model for neuroprotective testing.

14.
Eur J Pharm Sci ; 156: 105591, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065225

RESUMO

Contact lenses may act as drug release platforms for the treatment of ocular infections, but there is still the need for extending their typical release periods and enhancing ocular bioavailability. The present study aimed to develop a molecularly imprinted silicone-based hydrogel to be used in the manufacturing of contact lenses that can be loaded efficiently and be able to release the antibiotic moxifloxacin hydrochloride (MXF) in a sustained way. A set of hydrogels was prepared by the molecular imprinting method using acrylic acid (AA) as the functional monomer for the specific recognition of MXF. The modified hydrogels loaded a higher amount of MXF, which was released for a longer time. In vitro experiments, using a microfluidic cell to mimic the ocular surface fluid turnover, showed that the imprinted hydrogel TRIS(300)-I prepared with the highest content in AA led to MXF concentrations in the release medium which were effective against S. aureus and S. epidermidis for about 2 weeks. Furthermore, some important properties such as water uptake, wettability, transmittance, ionic permeability, and Young´s modulus of the modified hydrogel remained within the range of values recommended for contact lenses. No cytotoxicity and no potential ocular irritancy effect were detected. Such hydrogel seems to be a promising alternative to the current options for the treatment of ocular infections.


Assuntos
Lentes de Contato , Hidrogéis , Liberação Controlada de Fármacos , Moxifloxacina , Silicones , Staphylococcus aureus
15.
Mater Sci Eng C Mater Biol Appl ; 120: 111687, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545849

RESUMO

A combined strategy to control the release of two drugs, one anti-inflammatory (diclofenac sodium, DCF) and one antibiotic (moxifloxacin hydrochloride, MXF), from a soft contact lens (SCL) material, was assessed. The material was a silicone-based hydrogel, which was modified by molecular imprinting with MXF and coated by the layer-by-layer (LbL) method using natural polyelectrolytes: alginate (ALG), poly-l-lysine (PLL) and hyaluronate (HA), crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). Imprinting was used to increase the amount of MXF loaded and to sustain its release, while the LbL coating acted as a diffusion barrier for DCF and improved the surface properties. The drugs were loaded by soaking in a DCF + MXF dual solution. High hydrostatic pressure (HHP) was successfully applied in the sterilization of the drug-loaded hydrogels. The transmittance, refractive index, wettability and ionic permeability of the hydrogels remained within the required levels for SCLs application. The concentrations of the released DCF and MXF stayed above the IC50 and the MIC (for S. aureus and S. epidermidis) values, for 9 and 10 days, respectively. No ocular irritancy was detected by the HET-CAM test. NIH/3T3 cell viability demonstrated that the drug-loaded hydrogels were not toxic, and cell adhesion was reduced.


Assuntos
Lentes de Contato Hidrofílicas , Hidrogéis , Liberação Controlada de Fármacos , Moxifloxacina , Staphylococcus aureus
16.
Int J Pharm ; 585: 119506, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32512224

RESUMO

A layer-by-layer (LbL) coating was designed using ionic polysaccharides (chitosan, sodium alginate, sodium hyaluronate) and genipin (crosslinker), to sustain the release of diclofenac sodium salt (DCF) from soft contact lens (SCL) materials. The coating was hydrophilic, biocompatible, non-toxic, reduced bacterial growth and had minor effects on the physical properties of the material, such as wettability, ionic permeability, refractive index and transmittance, which remained within the recommended values for SCLs. The coating was applied on a silicone-based hydrogel and on commercial SofLens and Purevision SCLs. The coating attenuated the initial drug burst and extended the therapeutic period for, at least, two weeks. Relevantly, the problems of sterilizing drug loaded SCLs coated with biopolymers, using classic methods that involve high temperature or radiation, were successfully solved through high hydrostatic pressure (HHP) sterilization.


Assuntos
Antibacterianos/administração & dosagem , Lentes de Contato Hidrofílicas , Diclofenaco/administração & dosagem , Hidrogéis/química , Poli-Hidroxietil Metacrilato/análogos & derivados , Tecnologia Farmacêutica/métodos , Alginatos/efeitos adversos , Alginatos/química , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Técnicas Bacteriológicas , Linhagem Celular , Quitosana/efeitos adversos , Quitosana/química , Preparações de Ação Retardada , Diclofenaco/efeitos adversos , Diclofenaco/farmacologia , Liberação Controlada de Fármacos , Ácido Hialurônico/efeitos adversos , Ácido Hialurônico/química , Hidrogéis/efeitos adversos , Iridoides/efeitos adversos , Iridoides/química , Poli-Hidroxietil Metacrilato/efeitos adversos , Poli-Hidroxietil Metacrilato/química , Molhabilidade
17.
J Control Release ; 316: 331-348, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31715277

RESUMO

This work reports the development of porous poly (ε-caprolactone) (PCL)-based intraocular implants, prepared by green supercritical carbon dioxide (scCO2) foaming/mixing method (SFM), to produce implants that degrade faster than typical slow-degrading PCL-based implants. The higher porosities and surface areas of these implants led to faster degradation rates at in vitro accelerated alkaline conditions than low porosity/surface area implants prepared by hot melting processing. These porous implants also presented distinct (faster) release rates of a test-drug (dexamethasone). Additionally, these porous devices did not cause cell death and did not reduce the number of neurons, indicating that are not toxic to retinal cells. We further explored the impact of PCL-based implant to the retina by in vivo evaluation and histological analysis. Implants were surgically inserted in the vitreous of Wistar rats, and their presence did not change the function, structure and anatomy of the retina. These devices demonstrated a good intraocular tolerance, further confirming their viability for prolonged drug delivery applications. Further comprehensive studies based on this promising preliminary assessment and proof-of-concept could enable its future translation to clinical protective strategies for retinal diseases.


Assuntos
Anti-Inflamatórios/administração & dosagem , Dexametasona/administração & dosagem , Sistemas de Liberação de Medicamentos , Poliésteres/química , Administração Oftálmica , Animais , Anti-Inflamatórios/toxicidade , Preparações de Ação Retardada , Dexametasona/toxicidade , Portadores de Fármacos/química , Implantes de Medicamento , Liberação Controlada de Fármacos , Porosidade , Ratos , Ratos Wistar , Retina/metabolismo
18.
Curr Drug Deliv ; 5(2): 102-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18393811

RESUMO

In this work the possibility of impregnating P(MMA-EHA-EGDMA) with flurbiprofen using a clean and environmentally friendly technology, namely supercritical fluid technology was evaluated. P(MMA-EHA-EGDMA) has been proposed as a promising matrix to be used for intraocular delivery of anti-inflammatory drugs used in eye surgery and flurbiprofen is a non-steroidal anti-inflammatory agent. Fundamental studies like, the solubility of the drug in carbon dioxide, as well as the sorption degree of this polymeric matrix in the presence of carbon dioxide have been previously carried out. The aim of this research was to evaluate the effects of these two variables in the impregnation process. Different experimental conditions were tested and the results obtained suggest that the best impregnating conditions for this system are low temperatures and pressures, which at the same time correspond to a lower solubility of the drug in the supercritical fluid and a low swelling of the polymeric matrix. Experiments performed also indicate that the batch impregnation process leads to higher yields of impregnation and according to the release profiles obtained the drug can be released from the matrix up to three months, which presents great advantages for post-surgical treatments.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Flurbiprofeno/administração & dosagem , Implante de Lente Intraocular/métodos , Polímeros/química , Acrilatos/química , Materiais Biocompatíveis/química , Dióxido de Carbono/química , Preparações de Ação Retardada , Humanos , Metacrilatos/química , Metilmetacrilato/química , Pressão , Solubilidade , Tecnologia Farmacêutica/métodos , Temperatura
19.
Adv Drug Deliv Rev ; 131: 22-78, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30026127

RESUMO

Low drug bioavailability, which is mostly a result of poor aqueous drug solubilities and of inadequate drug dissolution rates, is one of the most significant challenges that pharmaceutical companies are currently facing, since this may limit the therapeutic efficacy of marketed drugs, or even result in the discard of potential highly effective drug candidates during developmental stages. Two of the main approaches that have been implemented in recent years to overcome poor drug solubility/dissolution issues have frequently involved drug particle size reduction (i.e., micronization/nanonization) and/or the modification of some of the physicochemical and structural properties of poorly water soluble drugs. A large number of particle engineering methodologies have been developed, tested, and applied in the synthesis and control of particle size/particle-size distributions, crystallinities, and polymorphic purities of drug micro- and nano-particles/crystals. In recent years pharmaceutical processing using supercritical fluids (SCF), in general, and supercritical carbon dioxide (scCO2), in particular, have attracted a great attention from the pharmaceutical industry. This is mostly due to the several well-known advantageous technical features of these processes, as well as to other increasingly important subjects for the pharmaceutical industry, namely their "green", sustainable, safe and "environmentally-friendly" intrinsic characteristics. In this work, it is presented a comprehensive state-of-the-art review on scCO2-based processes focused on the formation and on the control of the physicochemical, structural and morphological properties of amorphous/crystalline pure drug nanoparticles. It is presented and discussed the most relevant scCO2, scCO2-based fluids and drug physicochemical properties that are pertinent for the development of successful pharmaceutical products, namely those that are critical in the selection of an adequate scCO2-based method to produce pure drug nanoparticles/nanocrystals. scCO2-based nanoparticle formation methodologies are classified in three main families, and in terms of the most important role played by scCO2 in particle formation processes: as a solvent; as an antisolvent or a co-antisolvent; and as a "high mobility" additive (a solute, a co-solute, or a co-solvent). Specific particle formation methods belonging to each one of these families are presented, discussed and compared. Some selected amorphous/crystalline drug nanoparticles that were prepared by these methods are compiled and presented, namely those studied in the last 10-15 years. A special emphasis is given to the formation of drug cocrystals. It is also discussed the fundamental knowledge and the main mechanisms in which the scCO2-based particle formation methods rely on, as well as the current status and urgent needs in terms of reliable experimental data and of robust modeling approaches. Other addressed and discussed topics include the currently available and the most adequate physicochemical, morphological and biological characterization methods required for pure drug nanoparticles/nanocrystals, some of the current nanometrology and regulatory issues associated to the use of these methods, as well as some scale-up, post-processing and pharmaceutical regulatory subjects related to the industrial implementation of these scCO2-based processes. Finally, it is also discussed the current status of these techniques, as well as their future major perspectives and opportunities for industrial implementation in the upcoming years.


Assuntos
Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico , Nanopartículas/química , Preparações Farmacêuticas/síntese química , Humanos , Preparações Farmacêuticas/química
20.
Mater Sci Eng C Mater Biol Appl ; 93: 595-605, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30274091

RESUMO

This study aimed to evaluate the effect of poly(dimethylsiloxane) on the mechanical properties of chitosan-alginate (CA) polyelectrolyte complexes (PECs) with potential application as wound dressing biomaterials. For that purpose, different amounts of poly(dimethylsiloxane) were incorporated during the formulation of the PECs. Results showed that the highest tensile strength was observed when using 0.1 g of poly(dimethylsiloxane) per gram of PEC (CAS10). This formulation was also non-hemolytic, capable of inducing thrombus formation to potentially reduce bleeding, and additionally presented high stability when exposed to physiological fluids and/or conditions simulating patient bathing. To improve its wound healing capacity, this formulation was loaded with thymol and beta-carotene (anesthetic, anti-inflammatory and antioxidant compounds) by the supercritical carbon dioxide impregnation/deposition (SSI/D) method at 250 bar and 45 °C for 14 h and at two depressurization rates (5 and 10 bar/min). The PECs were also loaded by conventional impregnation in solution for comparison purposes. Higher bioactive loadings, of 1.8 ±â€¯0.2 and 1.3 ±â€¯0.03 µg per milligram of PEC for thymol and beta-carotene, respectively, were observed when using SSI/D and a higher depressurization rate (10 bar/min). These values do not correspond to the maximum loaded amount of each bioactive, which were strongly retained in the PEC structure due to favorable bioactive-polymer interactions, originating matrices that should present a more sustained release during in vivo applications.


Assuntos
Bandagens , Dimetilpolisiloxanos/química , Teste de Materiais , Timol/química , beta Caroteno/química , Animais , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA