Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 19(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33670878

RESUMO

Malaria is an infectious disease caused by protozoan parasites of the Plasmodium genus through the bite of female Anopheles mosquitoes, affecting 228 million people and causing 415 thousand deaths in 2018. Artemisinin-based combination therapies (ACTs) are the most recommended treatment for malaria; however, the emergence of multidrug resistance has unfortunately limited their effects and challenged the field. In this context, the ocean and its rich biodiversity have emerged as a very promising resource of bioactive compounds and secondary metabolites from different marine organisms. This systematic review of the literature focuses on the advances achieved in the search for new antimalarials from marine sponges, which are ancient organisms that developed defense mechanisms in a hostile environment. The principal inclusion criterion for analysis was articles with compounds with IC50 below 10 µM or 10 µg/mL against P. falciparum culture. The secondary metabolites identified include alkaloids, terpenoids, polyketides endoperoxides and glycosphingolipids. The structural features of active compounds selected in this review may be an interesting scaffold to inspire synthetic development of new antimalarials for selectively targeting parasite cell metabolism.


Assuntos
Antimaláricos/isolamento & purificação , Malária Falciparum/tratamento farmacológico , Poríferos/metabolismo , Animais , Antimaláricos/administração & dosagem , Antimaláricos/farmacologia , Desenvolvimento de Medicamentos , Resistência a Múltiplos Medicamentos , Humanos , Concentração Inibidora 50 , Plasmodium falciparum/efeitos dos fármacos , Metabolismo Secundário
2.
Bioorg Med Chem ; 23(3): 466-70, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25564380

RESUMO

NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 µM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 µM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 µM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors.


Assuntos
Vírus da Dengue/enzimologia , Flavonoides/farmacologia , Serina Endopeptidases/química , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Antivirais/química , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Flavonoides/química , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Serina Endopeptidases/metabolismo , Relação Estrutura-Atividade
3.
J Nat Prod ; 77(2): 392-6, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24521209

RESUMO

Byrsonima coccolobifolia leaf and stem extracts were studied in the search for possible leishmanicidal compounds using arginase (ARG) from Leishmania amazonensis as a molecular target. Flavonoids 1b, 1e-1g, 2a, 2b, and 2d-2f showed significant inhibitory activity, with IC50 values ranging from 0.9 to 4.8 µM. The kinetics of the most active compounds were determined. Flavonoids 1e, 1f, 2a, 2b, and 2e were characterized as noncompetitive inhibitors of ARG with dissociation constants (Ki) ranging from 0.24 to 3.8 µM, demonstrating strong affinity. Structure-activity relationship studies revealed some similarities in the structural features of flavonoids related to ARG activity.


Assuntos
Arginase/antagonistas & inibidores , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Leishmania/efeitos dos fármacos , Malpighiaceae/química , Brasil , Flavonoides/química , Concentração Inibidora 50 , Estrutura Molecular , Folhas de Planta/química , Caules de Planta/química , Relação Estrutura-Atividade
4.
Nat Prod Bioprospect ; 13(1): 23, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37553481

RESUMO

Marine biodiversity has emerged as a very promising resource of bioactive compounds and secondary metabolites from different sea organisms. The sponge's secondary metabolites demonstrated various bioactivities and potential pharmacological properties. This systematic review of the literature focuses on the advances achieved in the antioxidant potential of marine sponges in vitro. The review was performed in accordance with PRISMA guidelines. The main inclusion criterion for analysis was articles with identification of compounds from terpene classes that demonstrate antioxidant activity in vitro. Searching in three different databases, two hundred articles were selected. After screening abstracts, titles and evaluating for eligibility of manuscripts 14 articles were included. The most performed analyzes to detect antioxidant activity were scavenging activity 2,2-diphenyl-1-picrylhydrazyl (DPPH) and measurement of intracellular reactive oxygen species (ROS). It was possible to identify 17 compounds of the terpene class with pronounced antioxidant activity in vitro. Scientific evidence of the studies included in this review was accessed by the GRADE analysis. Terpenes play an important ecological role, moreover these molecules have a pharmaceutical and industrial application.

5.
Braz J Microbiol ; 51(3): 1169-1175, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32189177

RESUMO

Papain-like cysteine proteases (PLCPs) in plants are essential to prevent phytopathogen invasion. In order to search for cysteine protease inhibitors and to investigate compounds that could be associated to pineapple Fusarium disease, a chemistry investigation was performed on Fusarium proliferatum isolated from Ananas comosus (pineapple) and cultivated in Czapek medium. From F. proliferatum extracts, nine secondary metabolites were isolated and characterized by nuclear magnetic resonance spectroscopy and mass spectrometry experiments: beauvericin (1), fusaric acid (2), N-ethyl-3-phenylacetamide (3), N-acetyltryptamine (4), cyclo(L-Val-L-Pro) cyclodipeptide (5), cyclo(L-Leu-L-Pro) cyclodipeptide (6), cyclo(L-Leu-L-Pro) diketopiperazine (7), 2,4-dihydroxypyrimidine (8), and 1H-indole-3-carbaldehyde (9). Compounds 1, 3, and 6 showed significant inhibition of papain, with IC50 values of 25.3 ± 1.9, 39.4 ± 2.5, and 7.4 ± 0.5 µM, respectively. Compound 1 also showed significant inhibition against human cathepsins V and B with IC50 of 46.0 ± 3.0 and 6.8 ± 0.7 µM, respectively. The inhibition of papain by mycotoxins (fusaric acid and beauvericin) may indicate a mechanism of Fusarium in the roles of infection process.


Assuntos
Ananas/enzimologia , Cisteína Proteases/química , Inibidores de Cisteína Proteinase/química , Fusarium/química , Micotoxinas/química , Proteínas de Plantas/química , Ananas/química , Ananas/microbiologia , Inibidores de Cisteína Proteinase/metabolismo , Fusarium/metabolismo , Cinética , Espectrometria de Massas , Micotoxinas/metabolismo , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA