Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 338: 117804, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996570

RESUMO

The bacterial synthesis of copper nanoparticles emerges as an eco-friendly alternative to conventional techniques since it comprises a single-step and bottom-up approach, which leads to stable metal nanoparticles. In this paper, we studied the biosynthesis of Cu-based nanoparticles by Rhodococcus erythropolis ATCC4277 using a pre-processed mining tailing as a precursor. The influence of pulp density and stirring rate on particle size was evaluated using a factor-at-time experimental design. The experiments were carried out in a stirred tank bioreactor for 24 h at 25 °C, wherein 5% (v/v) of bacterial inoculum was employed. The O2 flow rate was maintained at 1.0 L min-1 and the pH at 7.0. Copper nanoparticles (CuNPs), with an average hydrodynamic diameter of 21 ± 1 nm, were synthesized using 25 g.L-1 of mining tailing and a stirring rate of 250 rpm. Aiming to visualize some possible biomedical applications of the as-synthesized CuNPs, their antibacterial activity was evaluated against Escherichia coli and their cytotoxicity was evaluated against Murine Embryonic Fibroblast (MEF) cells. The 7-day extract of CuNPs at 0.1 mg mL-1 resulted in 75% of MEF cell viability. In the direct method, the suspension of CuNPs at 0.1 mg mL-1 resulted in 70% of MEF cell viability. Moreover, the CuNPs at 0.1 mg mL-1 inhibited 60% of E. coli growth. Furthermore, the NPs were evaluated regarding their photocatalytic activity by monitoring the oxidation of methylene blue (MB) dye. The CuNPs synthesized showed rapid oxidation of MB dye, with the degradation of approximately 65% of dye content in 4 h. These results show that the biosynthesis of CuNPs by R. erythropolis using pre-processed mine tailing can be a suitable method to obtain CuNPs from environmental and economical perspectives, resulting in NPs useful for biomedical and photocatalytic applications.


Assuntos
Proteínas de Escherichia coli , Nanopartículas Metálicas , Camundongos , Animais , Cobre/química , Escherichia coli , Nanopartículas Metálicas/química , Bactérias , Oxirredução , Antibacterianos/química , Proteínas de Ciclo Celular
2.
J Mater Sci Mater Med ; 31(5): 41, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350625

RESUMO

Biomaterials may be useful in filling lost bone portions in order to restore balance and improve bone regeneration. The objective of this study was to produce polycaprolactone (PCL) membranes combined with two types of bioglass (Sol-Gel and melt-quenched) and determine their physical and biological properties. Membranes were produced through electrospinning. This study presented three experimental groups: pure PCL membranes, PCL-Melt-Bioglass and PCL-Sol-gel-Bioglass. Membranes were characterized using Scanning Electron Microscopy, Fourier Transform Infrared Spectrophotometry (FTIR), Energy-Dispersive Spectroscopy and Zeta Potential. The following in vitro tests were performed: MTT assay, alkaline phosphatase activity, total protein content and mineralization nodules. Twenty-four male rats were used to observe biological performance through radiographic, fracture energy, histological and histomorphometric analyses. The physical and chemical analysis results showed success in manufacturing bioactive membranes which significantly enhanced cell viability and osteoblast differentiation. The new formed bone from the in vivo experiment was similar to that observed in the control group. In conclusion, the electrospinning enabled preparing PCL membranes with bioglass incorporated into the structure and onto the surface of PCL fibers. The microstructure of the PCL membranes was influenced by the bioglass production method. Both bioglasses seem to be promising biomaterials to improve bone tissue regeneration when incorporated into PCL.


Assuntos
Técnicas de Cultura de Células/instrumentação , Cerâmica/química , Poliésteres/química , Animais , Materiais Biocompatíveis , Desenvolvimento Ósseo , Diferenciação Celular , Eletroquímica , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteogênese , Ratos , Engenharia Tecidual/métodos
3.
J Biomed Mater Res B Appl Biomater ; 111(4): 881-894, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36440654

RESUMO

Bone infection treatment is a significant challenge for the orthopedic field. 3D printing is a promising technology to produce scaffolds with customized architecture, able to stimulate and support bone growth. ß-TCP and S53P4 bioactive glass (BG) are well-known biomaterials for scaffold manufacturing. However, a multifunctional scaffold, able to inhibit microbial proliferation at the defect site, is of increasing interest to avoid infection recurrence. Tea tree oil (TTO) has aroused interest as an antimicrobial agent to minimize the use of antibiotics. Therefore, combining the regenerative potential of a bioceramic with TTO's antimicrobial properties could result in a scaffold capable of stimulating tissue growth and treating infections. In this context, this study aimed to produce and characterize 3D-printed ß-TCP/S53P4 BG scaffolds coated with TTO. Scaffolds morphological and chemical characterizations were carried out through XDR, SEM, and FTIR analysis. ß-TCP/S53P4 BG scaffolds showed a compressive strength of ~2 MPa and 53 ± 2% of porosity. The scaffolds were coated by two different procedures, using an ethanol/TTO (EtOH/TTO) and a gelatin/TTO (Gel/TTO) solution with 5, 10, and 15% (v/v) TTO. The addition of TTO decreased MG-63 cell viability for both coating groups, but the Gel/TTO group showed higher cell viability. The antibacterial activity of the coated scaffolds was evaluated against S. aureus and higher inhibition of colony formation was found for Gel/TTO group. Therefore, the coating with Gel/TTO was effective in terms of antibacterial activity and cell viability. Such Gel/TTO coated ß-TCP/S53P4 BG scaffolds are proposed for antibacterial bone tissue engineering.


Assuntos
Óleo de Melaleuca , Alicerces Teciduais , Alicerces Teciduais/química , Óleo de Melaleuca/farmacologia , Staphylococcus aureus , Engenharia Tecidual/métodos , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Antibacterianos/farmacologia , Antibacterianos/química , Impressão Tridimensional
4.
Mater Sci Eng C Mater Biol Appl ; 117: 111327, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32919681

RESUMO

Polymer membranes have been widely used in guided bone regeneration (GBR), especially when it comes to their use in dentistry. Poly (lactic acid) (PLA) have good mechanical properties such as flexibility, which allows the material to be moldable and also has biocompatibility and biodegradation. Besides that, bioglass (BG) incorporated into the polymer matrix can promote osteoinduction properties and osteoconduction properties to the polymer-ceramic biocomposite. The membranes are also required to exhibit antimicrobial activity to prevent or control the proliferation of pathogenic microorganisms, and the addition of carbon nanotubes (CNT) can assist in this property. The porous membranes of PLA with the addition of different contents of BG and CNT were obtained by solvent casting in controlled humidity method, and the synergistic effect of the addition of both fillers were investigated. The membranes showed pores (3-11 µm) on their surface. The addition of 5 wt% BG causes an increase in the surface porosity and bioactivity properties of the PLA. The agar diffusion test showed antimicrobial activity in the membranes with addition of CNT. In vitro results showed that the porous membranes were not cytotoxic and allowed cell activity and differentiation. Thus, BG collaborated to increase biological activity while CNT contributed to microbial activity, creating a synergistic effect on PLA porous membranes, being this effect more evident for PLA/5BG/1.0CNT. These results indicated a promising use of this new biomaterial for the production of porous membranes for GBR.


Assuntos
Nanotubos de Carbono , Regeneração Óssea , Cerâmica/farmacologia , Ácido Láctico , Poliésteres , Porosidade
5.
Mar Biotechnol (NY) ; 22(3): 357-366, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32335738

RESUMO

One of the most promising strategies to improve the biological performance of bone grafts is the combination of different biomaterials. In this context, the aim of this study was to evaluate the effects of the incorporation of marine spongin (SPG) into Hydroxyapatite (HA) for bone tissue engineering proposals. The hypothesis of the current study is that SPG into HA would improve the biocompatibility of material and would have a positive stimulus into bone formation. Thus, HA and HA/SPG materials were produced and scanning electron microscopy (SEM) analysis was performed to characterize the samples. Also, in order to evaluate the in vivo tissue response, samples were implanted into a tibial bone defect in rats. Histopathological, immunohistochemistry, and biomechanical analyses were performed after 2 and 6 weeks of implantation to investigate the effects of the material on bone repair. The histological analysis demonstrated that composite presented an accelerated material degradation and enhanced newly bone formation. Additionally, histomorphometry analysis showed higher values of %BV/TV and N.Ob/T.Ar for HA/SPG. Runx-2 immunolabeling was higher for the composite group and no difference was found for VEGF. Moreover, the biomechanical analysis demonstrated similar values for all groups. These results indicated the potential of SPG to be used as an additive to HA to improve the biological performance for bone regeneration applications. However, further long-term studies should be carried out to provide additional information regarding the material degradation and bone regeneration.


Assuntos
Osso e Ossos/efeitos dos fármacos , Colágeno/farmacologia , Durapatita/farmacologia , Poríferos/química , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis , Osso e Ossos/lesões , Masculino , Ratos Wistar , Tíbia/efeitos dos fármacos , Tíbia/lesões , Alicerces Teciduais/química
6.
J Mech Behav Biomed Mater ; 90: 635-643, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30502672

RESUMO

Scaffolds have been studied during the last decades as an alternative method to repair tissues. They are porous structures that act as a substrate for cellular growth, proliferation and differentiation. In this study, scaffolds of ß-tricalcium phosphate with calcium silicate fibers were prepared by gel casting method in order to be characterized and validated as a better choice for bone tissue treatment. Gel-casting led to scaffolds with high porosity (84%) and pores sizes varying from 160 to 500 µm, which is an important factor for the neovascularization of the growing tissue. Biocompatible and bioactive calcium silicate fibers, which can be successfully produced by molten salt method, were added into the scaffolds as a manner to improve its mechanical resistance and bioactivity. The addition of 5 wt% of calcium silicate fibers associated with a higher sintering temperature (1300 °C) increased by 64.6% the compressive strength of the scaffold and it has also led to the formation of a dense and uniform apatite layer after biomineralization assessment.


Assuntos
Compostos de Cálcio/química , Fosfatos de Cálcio/química , Teste de Materiais , Fenômenos Mecânicos , Silicatos/química , Temperatura , Alicerces Teciduais/química , Estudos de Viabilidade , Porosidade , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA