RESUMO
Fungi of the genus Penicillium section Sclerotiora have as their main characteristic the presence of orange-pigmented mycelium, which is associated with sclerotiorin, a chlorinated secondary metabolite of the azaphilone subclass of polyketides. Sclerotiorin presents anti-diabetes, antioxidant, anti-inflammatory, anti-Alzheimer, antiviral, and antimicrobial activities, which has always attracted the attention of researchers worldwide. During our ongoing search for azaphilone-producing Amazonian fungi, the strain of Penicillium MMSRG-058 was isolated as an endophyte from the roots of Duguetia stelechantha and showed great capacity for producing sclerotiorin-like metabolites. Using multilocus phylogeny, this strain was identified as Penicillium meliponae. Moreover, based on the genome mining of this strain through the reverse approach, a cluster of putative biosynthetic genes (BGC) responsible for the biosynthesis of sclerotiorin-like metabolites (scl cluster) was identified. The knockout of the sclA (highly reducing PKS) and sclI (non-reducing PKS) genes resulted in mutants with loss of mycelial pigmentation and terminated the biosynthesis of sclerotiorin-like metabolites: geumsanol B, chlorogeumsanol B, 7-deacetylisochromophilone VI, isochromophilone VI, ochrephilone, isorotiorin, and sclerotiorin. Based on these results, a biosynthetic pathway was proposed considering the homology of BGC scl genes with the azaphilone BGCs that have already been functionally characterized.
Assuntos
Penicillium , Técnicas de Inativação de Genes , Penicillium/genética , Penicillium/metabolismo , Fungos/genética , Família MultigênicaRESUMO
The Aedes aegypti mosquito is the primary vector of Dengue, Chikungunya and Zika causing major problems for public health, which requires new strategies for its control, like the use of entomopathogenic microorganisms. In this study, bacteria from various Amazonian environments were isolated and tested for their pathogenicity to A. aegypti larvae. Following thermal shock to select sporulated Bacillus spp., 77 bacterial strains were isolated. Molecular identification per 16S RNA sequences revealed that the assembled strains contained several species of the genus Bacillus and one species each of Brevibacillus, Klebsiella, Serratia, Achromobacter and Brevundimonas. Among the isolated Bacillus sp. strains, 19 showed larvicidal activity against A. aegypti. Two strains of Brevibacillus halotolerans also displayed larvicidal activity. For the first time, larvicidal activity against A. aegypti was identified for a strain of Brevibacillus halotolerans. Supernatant and pellet fractions of bacterial cultures were tested separately for larvicidal activities. Eight strains contained isolated fractions resulting in at least 50% mortality when tested at a concentration of 5 mg/mL. Further studies are needed to characterize the active larvicidal metabolites produced by these microorganisms and define their mechanisms of action.
RESUMO
A practical course was given to undergraduate biology students enrolled in the elective course "Introduction to Genetic Engineering" at the Federal University of São Carlos (UFSCar), São Paulo, Brazil. The goal of the course was to teach current molecular biology tools applied to a real research situation that could be reported by the students themselves. The purpose was to produce a plant recombinant protein and demonstrate a heretofore unreported biological activity. Cystatins, natural inhibitors of cysteine proteases, were proposed for these studies. Initially, the students searched for plant cystatin cDNA sequences in the NCBI databases and selected the Oryzacystatin I gene (ocI) from rice, Oriza sativa, as the target gene for this study. Total RNA was extracted from rice-germinating seeds and primers containing restriction sites for NdeI and EcoRI were designed based on the ocI cDNA sequence and then used to amplify the open reading frame (ORF). RT-PCR amplification provided a band of the expected size for ocI ORF (309 bp). The PCR product was cut with NdeI and EcoRI restriction enzymes and cloned directly in the pET28a expression vector digested with the same enzymes. A pET28-ocI recombinant clone was selected, checked by sequencing, and used to transform Escherichia coli BL21 (DE3) expression strain. After induction of the bacteria with isopropylthiogalactoside and cellular disruption, the His-tagged OCI protein, present mainly in the soluble fraction, was purified by affinity chromatography in a nickel column. The purified protein was successfully used to inhibit fungal growth (Trichoderma reesei). The results were discussed extensively and the students contributed to the writing of this article, of which they are co-authors.
RESUMO
Essential oils from the leaves, twigs and barks of Bocageopsis pleiosperma Maas were obtained by using hydrodistillation and analysed by using gas chromatography coupled to mass spectrometry. Several compounds (51) were detected and identified, being ß-bisabolene the main component in all aerial parts of the plant, with higher concentration in the leaves (55.77%), followed by barks (38.53%) and twigs (34.37%). In order to increase the biological knowledge about the essential oil of Bocageopsis species, antimicrobial activities were evaluated against the microorganisms Escherichia coli, Staphylococcus epidermidis, Enterobacter aerogenes, Candida tropicalis, Candida dubliniensis, Candida glabrata and Candida albicans. The essential oil obtained from the barks exhibited a moderate effect against S. epidermidis ATCC 1228 (MIC = 250 µg/mL), while the other oils did not exhibit antimicrobial activity. These results represent the first report about the chemical composition of B. pleiosperma and the first antimicrobial evaluation with a Bocageopsis species.
Assuntos
Annonaceae/química , Anti-Infecciosos/farmacologia , Óleos Voláteis/química , Óleos de Plantas/química , Sesquiterpenos/química , Anti-Infecciosos/química , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Sesquiterpenos Monocíclicos , Óleos Voláteis/farmacologia , Casca de Planta/química , Folhas de Planta/química , Óleos de Plantas/farmacologiaRESUMO
A Pestalotiopis sp. was isolated from the trunk bark of Pinus taeda. The fungus was cultivated in liquid medium and produced three highly oxygenated caryophyllene sequiterpene derivatives, named pestalotiopsolide A, taedolidol and 6-epitaedolidol, respectively. The sesquiterpenes were isolated by silica gel based chromatographic procedures and their structures were elucidated by NMR spectroscopic data.
Assuntos
Fungos Mitospóricos/química , Pinus/microbiologia , Casca de Planta/microbiologia , Sesquiterpenos/química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Fungos Mitospóricos/isolamento & purificação , Modelos Moleculares , Conformação Molecular , Pinus taeda , Sesquiterpenos Policíclicos , Sesquiterpenos/isolamento & purificaçãoRESUMO
A new dammarane triterpene named mauritic acid (1) was isolated from the roots of Mauritia flexuosa L.f. The complete structural assignment of this new compound was elucidated from spectroscopic methods. Moreover, this compound was evaluated for its cytotoxicity against human cancer cell lines (OVCAR-8, PCM3, NCIH358M and different leukaemia cell strains). The mauritic acid presented significant cytotoxicity against OVCAR-8, PCM3 and NCIH358M cell lines with IC50 3.02, 2.39 and 6.19 µM, respectively. The triterpenes 1 and 2 were also tested for their antimicrobial activity against 15 strains of microorganisms, including fungi and bacteria, with the best minimal inhibitory concentration values ranging from 50.8 to 203.5 µM.
Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Arecaceae/química , Triterpenos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Raízes de Plantas/química , Triterpenos/químicaRESUMO
Thirteen endophytic fungal strains of the genus Pestalotiopsis were isolated from the medicinal plant Maytenus ilicifolia Mart. ex. Reiss (commonly known as "espinheira santa") and their antimicrobial properties were investigated. Two isolates were successful in inhibiting the growth of the tested microorganisms (Escherichia coli, Klebsiella pneumoniae, Micrococcus luteus, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA)) using the technique of bioautographic thin-layer chromatography (TLC) agar overlay assay. An analysis based on a polyphasic approach integrating taxonomic information, morphological traits, RAPD markers, and the sequencing of the ITS1-5.8S-ITS2 of the rDNA led to the assignment of the isolates as belonging to the species Pestalotiopsis microspora, Pestalotiopsis vismiae, and Pestalotiopsis leucothoes. Therefore, the present study presents a new approach to the study of endophytic fungi of the genus Pestalotiopsis.