Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(11): 116105, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31573266

RESUMO

Disordered carbons comprise graphene fragments assembled into three-dimensional networks. It has long been debated whether these networks contain positive curvature, as seen in fullerenes, negative curvature, as proposed for the schwarzite structures, or zero curvature, as in ribbons. We present a mesh-based approach to analyze the topology of a set of nanoporous and glassy carbon models that accurately reproduce experimental properties. Although all three topological elements are present, negatively curved structures dominate. At the atomic level, analysis of local environments shows that sp- and sp^{3}-bonded atoms are associated with line defects and screw dislocations that resolve topological complexities such as termination of free edges and stacking of low curvature regions into ribbons. These results provide insight into the synthesis of porous carbon materials, glassy carbon and the graphitizability of carbon materials.

2.
Nat Commun ; 12(1): 546, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483513

RESUMO

Isotopes of heavier gases including carbon (13C/14C), nitrogen (13N), and oxygen (18O) are highly important because they can be substituted for naturally occurring atoms without significantly perturbing the biochemical properties of the radiolabelled parent molecules. These labelled molecules are employed in clinical radiopharmaceuticals, in studies of brain disease and as imaging probes for advanced medical imaging techniques such as positron-emission tomography (PET). Established distillation-based isotope gas separation methods have a separation factor (S) below 1.05 and incur very high operating costs due to high energy consumption and long processing times, highlighting the need for new separation technologies. Here, we show a rapid and highly selective adsorption-based separation of 18O2 from 16O2 with S above 60 using nanoporous adsorbents operating near the boiling point of methane (112 K), which is accessible through cryogenic liquefied-natural-gas technology. A collective-nuclear-quantum effect difference between the ordered 18O2 and 16O2 molecular assemblies confined in subnanometer pores can explain the observed equilibrium separation and is applicable to other isotopic gases.

3.
Nanoscale Adv ; 1(7): 2495-2501, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36132736

RESUMO

Two-dimensional graphene has remarkable properties that are revolutionary in many applications. Scrolling monolayer graphene with precise tunability would create further potential for niche applications but this has proved challenging. We have now established the ability to fabricate monolayer graphene scrolls in high yield directly from graphite flakes under non-equilibrium conditions at room temperature in dynamic thin films of liquid. Using conductive atomic force microscopy we demonstrate that the graphene scrolls form highly conducting electrical contacts to highly oriented pyrolytic graphite (HOPG). These highly conducting graphite-graphene contacts are attractive for the fabrication of interconnects in microcircuits and align with the increasing interest in building all sp2-carbon circuits. Above a temperature of 450 °C the scrolls unravel into buckled graphene sheets, and this process is understood on a theoretical basis. These findings augur well for new applications, in particular for incorporating the scrolls into miniaturized electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA