Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Plant Cell ; 33(4): 1319-1340, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33793825

RESUMO

In plants, chitin-triggered immunity is one of the first lines of defense against fungi, but phytopathogenic fungi have developed different strategies to prevent the recognition of chitin. Obligate biotrophs such as powdery mildew fungi suppress the activation of host responses; however, little is known about how these fungi subvert the immunity elicited by chitin. During epiphytic growth, the cucurbit powdery mildew fungus Podosphaera xanthii expresses a family of candidate effector genes comprising nine members with an unknown function. In this work, we examine the role of these candidates in the infection of melon (Cucumis melo L.) plants, using gene expression analysis, RNAi silencing assays, protein modeling and protein-ligand predictions, enzymatic assays, and protein localization studies. Our results show that these proteins are chitinases that are released at pathogen penetration sites to break down immunogenic chitin oligomers, thus preventing the activation of chitin-triggered immunity. In addition, these effectors, designated effectors with chitinase activity (EWCAs), are widely distributed in pathogenic fungi. Our findings reveal a mechanism by which fungi suppress plant immunity and reinforce the idea that preventing the perception of chitin by the host is mandatory for survival and development of fungi in plant environments.


Assuntos
Ascomicetos/patogenicidade , Quitina/metabolismo , Quitinases/metabolismo , Cucumis melo/microbiologia , Imunidade Vegetal/fisiologia , Ascomicetos/citologia , Ascomicetos/genética , Ascomicetos/metabolismo , Parede Celular/metabolismo , Quitina/imunologia , Quitinases/química , Quitinases/genética , Cucumis melo/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Interações Hospedeiro-Patógeno/fisiologia , Família Multigênica , Filogenia , Doenças das Plantas/microbiologia
2.
J Enzyme Inhib Med Chem ; 39(1): 2330907, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38651823

RESUMO

Antimicrobial resistance (AMR) is a pressing global issue exacerbated by the abuse of antibiotics and the formation of bacterial biofilms, which cause up to 80% of human bacterial infections. This study presents a computational strategy to address AMR by developing three novel quantitative structure-activity relationship (QSAR) models based on molecular topology to identify potential anti-biofilm and antibacterial agents. The models aim to determine the chemo-topological pattern of Gram (+) antibacterial, Gram (-) antibacterial, and biofilm formation inhibition activity. The models were applied to the virtual screening of a commercial chemical database, resulting in the selection of 58 compounds. Subsequent in vitro assays showed that three of these compounds exhibited the most promising antibacterial activity, with potential applications in enhancing food and medical device safety.


Assuntos
Antibacterianos , Biofilmes , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Relação Quantitativa Estrutura-Atividade , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Estrutura Molecular , Humanos , Contaminação de Alimentos/prevenção & controle , Relação Dose-Resposta a Droga
3.
Int Microbiol ; 25(4): 679-689, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35670867

RESUMO

The biocontrol rhizobacterium Pseudomonas chlororaphis is one of the bacterial species of the P. fluorescens group where insecticide fit genes have been found. Fit toxin, supported with other antimicrobial compounds, gives the bacterial the ability to repel and to fight against eukaryotic organisms, such as nematodes and insect larvae, thus protecting the plant host and itself. Pseudomonas chlororaphis PCL1606 is an antagonistic rhizobacterium isolated from avocado roots and show efficient biocontrol against fungal soil-borne disease. The main antimicrobial compound produced by P. chlororaphis PCL606 is 2-hexyl-5-propyl resorcinol (HPR), which plays a crucial role in effective biocontrol against fungal pathogens. Further analysis of the P. chlororaphis PCL1606 genome showed the presence of hydrogen cyanide (HCN), pyrrolnitrin (PRN), and homologous fit genes. To test the insecticidal activity and to determine the bases for such activity, single and double mutants on the biosynthetic genes of these four compounds were tested in a Galleria mellonella larval model using inoculation by injection. The results revealed that Fit toxin and HPR in combination are involved in the insecticide phenotype of P. chlororaphis PCL1606, and additional compounds such as HCN and PRN could be considered supporting compounds.


Assuntos
Anti-Infecciosos , Inseticidas , Pseudomonas chlororaphis , Cianeto de Hidrogênio , Inseticidas/farmacologia , Pseudomonas chlororaphis/genética , Pirrolnitrina , Resorcinóis , Solo
4.
Mol Plant Microbe Interact ; 34(3): 319-324, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33141618

RESUMO

Podosphaera xanthii is the main causal agent of powdery mildew in cucurbits and, arguably, the most important fungal pathogen of cucurbit crops. Here, we present the first reference genome assembly for P. xanthii. We performed a hybrid genome assembly, using reads from Illumina NextSeq550 and PacBio Sequel S3. The short and long reads were assembled into 1,727 scaffolds with an N50 size of 163,173 bp, resulting in a 142-Mb genome size. The combination of homology-based and ab initio predictions allowed the prediction of 14,911 complete genes. Repetitive sequences comprised 76.2% of the genome. Our P. xanthii genome assembly improves considerably the molecular resources for research on P. xanthii-cucurbit interactions and provides new opportunities for further genomics, transcriptomics, and evolutionary studies in powdery mildew fungi.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Biologia Computacional , Cucurbita , Genoma de Planta , Ascomicetos/genética , Cucurbita/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
5.
Environ Microbiol ; 23(4): 2086-2101, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33314481

RESUMO

Pseudomonas chlororaphis PCL1606 (PcPCL1606) displays plant-colonizing features and exhibits antagonistic traits against soil-borne phytopathogenic fungi. Biofilm formation could be relevant for the PcPCL1606 lifestyle, and in this study the role of some putative extracellular matrix components (EMC; Fap-like fibre, alginate and Psl-like polysaccharides) in the biofilm architecture and biocontrol activity of this bacterium were determined. EMC such as the Fap-like fibre and alginate polysaccharide play secondary roles in biofilm formation in PcPCL1606, because they are not fundamental to its biofilm architecture in flow cell chamber, but synergistically they have shown to favour bacterial competition during biofilm formation. Conversely, studies on Psl-like polysaccharide have revealed that it may contain mannose, and that it is strongly involved in the PcPCL1606 biofilm architecture and niche competition. Furthermore, the Fap-like fibre and Psl-like exopolysaccharide play roles in early surface attachment and contribute to biocontrol activity against the white root rot disease caused by Rosellinia necatrix in avocado plants. These results constitute the first report regarding the study of the extracellular matrix of the PcPCL1606 strain and highlight the importance of a putative Fap-like fibre and Psl-like exopolysaccharide produced by PcPCL1606 in the biofilm formation process and interactions with the host plant root.


Assuntos
Pseudomonas chlororaphis , Xylariales , Ascomicetos , Biofilmes , Matriz Extracelular , Polissacarídeos Bacterianos , Pseudomonas aeruginosa
6.
Appl Environ Microbiol ; 87(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33361370

RESUMO

Copper resistance mechanisms provide an important adaptive advantage to plant pathogenic bacteria under exposure to copper treatments. Copper resistance determinants have been described in Pseudomonas syringae pv. syringae (Pss) strains isolated from mango intimately associated with 62 kb plasmids belonging to the pPT23A family (PFP). It has been previously described that the indiscriminate use of copper-based compounds promotes the selection of copper resistant bacterial strains and constitutes a selective pressure in the evolution of copper resistance determinants. Hence, we have explored in this study the copper resistance evolution and the distribution of specific genetic determinants in two different Pss mango populations isolated from the same geographical regions, mainly from southern Spain with an average of 20 years of difference. The total content of plasmids, in particular the 62 kb plasmids, and the number of copper resistant Pss strains were maintained at similar levels over the time. Interestingly, the phylogenetic analysis indicated the presence of a phylogenetic subgroup (PSG) in the Pss mango phylotype, mostly composed of the recent Pss population analyzed in this study that was strongly associated with a hyper-resistant phenotype to copper. Genome sequencing of two selected Pss strains from this PSG revealed the presence of a large Tn7-like transposon of chromosomal location, which harbored putative copper and arsenic resistance genes (COARS Tn7-like). Transformation of the copper sensitive Pss UMAF0158 strain with some putative copper resistance genes and RT-qPCR experiments brought into light the role of COARS Tn7-like transposon in the hyper-resistant phenotype to copper in Pss.IMPORTANCECopper compounds have traditionally been used as standard bactericides in agriculture in the past few decades. However, the extensive use of copper has fostered the evolution of bacterial copper resistance mechanisms. Pseudomonas syringae is a plant pathogenic bacterium used worldwide as a model to study plant-pathogen interactions. The adaption of P. syringae to plant surface environment is the most important step prior to an infection. In this scenario, copper resistance mechanisms could play a key role in improving its epiphytic survival. In this work, a novel Tn7-like transposon of chromosomal location was detected in P. syringae pv. syringae strains isolated from mango. This transposon conferred the highest resistance to copper sulfate described to date for this bacterial phytopathogen. Understanding in depth the copper resistance mechanisms and their evolution are important steps to the agricultural industry to get a better improvement of disease management strategies.

7.
Environ Microbiol ; 22(11): 4532-4544, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32794337

RESUMO

Plants and microbes have evolved sophisticated ways to communicate and coexist. The simplest interactions that occur in plant-associated habitats, i.e., those involved in disease detection, depend on the production of microbial pathogenic and virulence factors and the host's evolved immunological response. In contrast, microbes can also be beneficial for their host plants in a number of ways, including fighting pathogens and promoting plant growth. In order to clarify the mechanisms directly involved in these various plant-microbe interactions, we must still deepen our understanding of how these interkingdom communication systems, which are constantly modulated by resident microbial activity, are established and, most importantly, how their effects can span physically separated plant compartments. Efforts in this direction have revealed a complex and interconnected network of molecules and associated metabolic pathways that modulate plant-microbe and microbe-microbe communication pathways to regulate diverse ecological responses. Once sufficiently understood, these pathways will be biotechnologically exploitable, for example, in the use of beneficial microbes in sustainable agriculture. The aim of this review is to present the latest findings on the dazzlingly diverse arsenal of molecules that efficiently mediate specific microbe-microbe and microbe-plant communication pathways during plant development and on different plant organs.


Assuntos
Bactérias/metabolismo , Desenvolvimento Vegetal/fisiologia , Plantas/microbiologia , Simbiose/fisiologia , Germinação/fisiologia , Interações Microbianas/fisiologia , Microbiota/fisiologia , Raízes de Plantas/microbiologia , Plantas/metabolismo , Rizosfera , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Transdução de Sinais/fisiologia , Fatores de Virulência/metabolismo
8.
FASEB J ; 33(11): 12146-12163, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31370706

RESUMO

The formation of biofilms provides structural and adaptive bacterial response to the environment. In Bacillus species, the biofilm extracellular matrix is composed of exopolysaccharides, hydrophobins, and several functional amyloid proteins. We report, using multiscale approaches such as solid-state NMR (SSNMR), electron microscopy, X-ray diffraction, dynamic light scattering, attenuated total reflection Fourier transform infrared (FTIR), and immune-gold labeling, the molecular architecture of B. subtilis and pathogenic B. cereus functional amyloids. SSNMR data reveal that the major amyloid component TasA in its fibrillar amyloid form contain ß-sheet and α-helical secondary structure, suggesting a nontypical amyloid architecture in B. subtilis. Proteinase K digestion experiments indicate the amyloid moiety is ∼100 aa long, and subsequent SSNMR and FTIR signatures for B. subtilis and B. cereus TasA filaments highlight a conserved amyloid fold, albeit with substantial differences in structural polymorphism and secondary structure composition. Structural analysis and coassembly data on the accessory protein TapA in B. subtilis and its counterpart camelysin in B. cereus reveal a catalyzing effect between the functional amyloid proteins and a common structural architecture, suggesting a coassembly in the context of biofilm formation. Our findings highlight nontypical amyloid behavior of these bacterial functional amyloids, underlining structural variations between biofilms even in closely related bacterial species.-El Mammeri, N., Hierrezuelo, J., Tolchard, J., Cámara-Almirón, J., Caro-Astorga, J., Álvarez-Mena, A., Dutour, A., Berbon, M., Shenoy, J., Morvan, E., Grélard, A., Kauffmann, B., Lecomte, S., de Vicente, A., Habenstein, B., Romero, D., Loquet, A. Molecular architecture of bacterial amyloids in Bacillus biofilms.


Assuntos
Proteínas Amiloidogênicas/química , Bacillus/fisiologia , Proteínas de Bactérias/química , Biofilmes , Espectroscopia de Ressonância Magnética , Metaloproteases/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478234

RESUMO

The rhizobacterium Pseudomonas pseudoalcaligenes AVO110, isolated by the enrichment of competitive avocado root tip colonizers, controls avocado white root rot disease caused by Rosellinia necatrix Here, we applied signature-tagged mutagenesis (STM) during the growth and survival of AVO110 in fungal exudate-containing medium with the goal of identifying the molecular mechanisms linked to the interaction of this bacterium with R. necatrix A total of 26 STM mutants outcompeted by the parental strain in fungal exudate, but not in rich medium, were selected and named growth-attenuated mutants (GAMs). Twenty-one genes were identified as being required for this bacterial-fungal interaction, including membrane transporters, transcriptional regulators, and genes related to the metabolism of hydrocarbons, amino acids, fatty acids, and aromatic compounds. The bacterial traits identified here that are involved in the colonization of fungal hyphae include proteins involved in membrane maintenance (a dynamin-like protein and ColS) or cyclic-di-GMP signaling and chemotaxis. In addition, genes encoding a DNA helicase (recB) and a regulator of alginate production (algQ) were identified as being required for efficient colonization of the avocado rhizosphere.IMPORTANCE Diseases associated with fungal root invasion cause a significant loss of fruit tree production worldwide. The bacterium Pseudomonas pseudoalcaligenes AVO110 controls avocado white root rot disease caused by Rosellinia necatrix by using mechanisms involving competition for nutrients and niches. Here, a functional genomics approach was conducted to identify the bacterial traits involved in the interaction with this fungal pathogen. Our results contribute to a better understanding of the multitrophic interactions established among bacterial biocontrol agents, the plant rhizosphere, and the mycelia of soilborne pathogens.


Assuntos
Doenças das Plantas/microbiologia , Pseudomonas pseudoalcaligenes/fisiologia , Xylariales/fisiologia , Antibiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Micélio/genética , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Persea/microbiologia , Raízes de Plantas/microbiologia , Pseudomonas pseudoalcaligenes/genética , Pseudomonas pseudoalcaligenes/crescimento & desenvolvimento , Xylariales/genética , Xylariales/crescimento & desenvolvimento
10.
Phytopathology ; 109(1): 17-26, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30102576

RESUMO

Bacterial apical necrosis of mango trees, a disease elicited by Pseudomonas syringae pv. syringae, is a primary limiting factor of mango crop production in the Mediterranean region. In this study, a collection of bacterial isolates associated with necrotic symptoms in mango trees similar to those produced by bacterial apical necrosis disease were isolated over five consecutive years in orchards from the Canary Islands. The bacterial isolates were characterized and identified as Pantoea agglomerans. Pathogenicity tests conducted on onion bulbs and mango plants confirmed that P. agglomerans strains isolated from mango trees are a new etiological agent of a bacterial necrotic disease in the Canary Islands. Pathogenicity plasmids of the pPATH family have been previously reported in P. agglomerans. The majority of putatively pathogenic (n = 23) and pathogenic (n = 4) P. agglomerans strains isolated from mango trees harbored four plasmids, one of which was close in size to the 135-kb pPATH pathogenicity plasmid. The analysis of the presence of two major genes in pPATH plasmids (repA and hrpJ) was undertaken in P. agglomerans strains isolated from mango trees. The hrpJ gene was detected in the 140-kb plasmid of pathogenic P. agglomerans strains isolated from mango trees but it showed differences in nucleotide sequences compared with other pathogenic strains. In contrast, the repA gene was not detected in any of the putatively pathogenic and pathogenic P. agglomerans strains isolated from mango trees. Finally, genetic characterization and phylogenetic analysis using the hrpJ gene and the housekeeping genes gyrB and rpoB showed that almost all P. agglomerans strains that were putatively pathogenic and pathogenic on mango trees clustered together, forming a differentiated phylogroup with respect to the other pathogenic P. agglomerans strains described from other hosts.


Assuntos
Mangifera/microbiologia , Pantoea/patogenicidade , Doenças das Plantas/microbiologia , Genes Bacterianos , Pantoea/genética , Filogenia , Plasmídeos/genética , Espanha
11.
Plant Dis ; 103(7): 1515-1524, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31059385

RESUMO

Powdery mildew, caused by the fungus Podosphaera xanthii, is one of the most economically important diseases affecting cucurbit crops in Spain. Currently, chemical control offers the most efficient management of the disease; however, P. xanthii isolates resistant to multiple classes of site-specific fungicides have been reported in the Spanish cucurbit powdery mildew population. In previous studies, resistance to the fungicides known as methyl benzimidazole carbamates (MBCs) was found to be caused by the amino acid substitution E198A on ß-tubulin. To detect MBC-resistant isolates in a faster, more efficient, and more specific way than the traditional methods used to date, a loop-mediated isothermal amplification (LAMP) system was developed. In this study, three sets of LAMP primers were designed. One set was designed for the detection of the wild-type allele and two sets were designed for the E198A amino acid change. Positive results were only obtained with both mutant sets; however, LAMP reaction conditions were only optimized with primer set 2, which was selected for optimal detection of the E198A amino acid change in P. xanthii-resistant isolates, along with the optimal temperature and duration parameters of 65°C for 75 min, respectively. The hydroxynaphthol blue (HNB) metal indicator was used for quick visualization of results through the color change from violet to sky blue when the amplification was positive. HNB was added before the amplification to avoid opening the lids, thus decreasing the probability of contamination. To confirm that the amplified product corresponded to the ß-tubulin gene, the LAMP product was digested with the enzyme LweI and sequenced. Our results show that the LAMP technique is a specific and reproducible method that could be used for monitoring MBC resistance of P. xanthii directly in the field.


Assuntos
Ascomicetos , Farmacorresistência Fúngica , Doenças das Plantas , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Ascomicetos/fisiologia , Benzimidazóis/farmacologia , Carbamatos/farmacologia , Técnicas de Amplificação de Ácido Nucleico , Espanha
12.
Mol Plant Microbe Interact ; 31(9): 914-931, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29513627

RESUMO

Podosphaera xanthii is the main causal agent of powdery mildew disease in cucurbits. In a previous study, we determined that P. xanthii expresses approximately 50 Podosphaera effector candidates (PECs), identified based on the presence of a predicted signal peptide and the absence of functional annotation. In this work, we used host-induced gene silencing (HIGS), employing Agrobacterium tumefaciens as a vector for the delivery of the silencing constructs (ATM-HIGS), to identify genes involved in early plant-pathogen interaction. The analysis of seven selected PEC-encoding genes showed that six of them, PEC007, PEC009, PEC019, PEC032, PEC034, and PEC054, are required for P. xanthii pathogenesis, as revealed by reduced fungal growth and increased production of hydrogen peroxide by host cells. In addition, protein models and protein-ligand predictions allowed us to identify putative functions for these candidates. The biochemical activities of PEC019, PEC032, and PEC054 were elucidated using their corresponding proteins expressed in Escherichia coli. These proteins were confirmed as phospholipid-binding protein, α-mannosidase, and cellulose-binding protein. Further, BLAST searches showed that these three effectors are widely distributed in phytopathogenic fungi. These results suggest novel targets for fungal effectors, such as host-cell plasma membrane, host-cell glycosylation, and damage-associated molecular pattern-triggered immunity.


Assuntos
Ascomicetos/patogenicidade , Cucurbitaceae/microbiologia , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Modelos Moleculares , Doenças das Plantas/microbiologia , Agrobacterium tumefaciens/genética , Ascomicetos/genética , Cucurbitaceae/imunologia , Proteínas Fúngicas/genética , Inativação Gênica , Vetores Genéticos/genética , Doenças das Plantas/imunologia
13.
Crit Rev Microbiol ; 44(6): 653-666, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30354913

RESUMO

Intense research has confirmed the formerly theoretical distribution of amyloids in nature, and studies on different systems have illustrated the role of these proteins in microbial adaptation and in interactions with the environment. Two lines of research are expanding our knowledge on functional amyloids: (i) structural studies providing insights into the molecular machineries responsible for the transition from monomer to fibers and (ii) studies showing the way in which these proteins might participate in the microbial fitness in natural settings. Much is known about how amyloids play a role in the social behavior of bacteria, or biofilm formation, and in the adhesion of bacteria to surfaces; however, we are still in the initial stages of understanding a complementary involvement of amyloids in bacteria-host interactions. This review will cover the following two topics: first, the key aspects of the microbial platforms dedicated to the assembly of the fibers, and second, the mechanisms by which bacteria utilize the morphological and biochemical variability of amyloids to modulate the immunological response of the host, plants and humans, contributing to (i) infection, in the case of pathogenic bacteria or (ii) promotion of the health of the host, in the case of beneficial bacteria.


Assuntos
Amiloide/química , Amiloide/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Amiloide/genética , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/genética
14.
Plant Dis ; 102(8): 1599-1605, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30673427

RESUMO

In Spain, management of the cucurbit powdery mildew pathogen Podosphaera xanthii is strongly dependent on chemicals such as quinone outside inhibitor (QoI) fungicides. In a previous report, widespread resistance to QoI fungicides in populations of P. xanthii in south-central Spain was documented, but the molecular mechanisms of resistance remained unclear. In this work, the role of the Rieske-FeS (risp) and the cytochrome b (cytb) gene mutations in QoI resistance of P. xanthii were examined. No point mutations in the risp gene were found in the three QoI-resistant isolates analyzed. For cytb, sequence analysis revealed the presence of a G143A substitution that occurs in many QoI-resistant fungi. This mutation was always detected in QoI-resistant isolates of P. xanthii; however, it was also detected in sensitive isolates. To better understand the role of heteroplasmy for cytb in QoI resistance of P. xanthii, an allele-specific quantitative PCR was developed to quantify the relative abundance of the G143 (sensitive) and A143 (resistant) alleles. High relative abundance of A143 allele (70%) was associated with isolates resistant to QoI fungicides; however, QoI-sensitive isolates also carried the mutated allele in frequencies ranged from 10 to 60%. Our data suggest that G143A mutation in cytb is the primary factor involved in QoI resistance of P. xanthii but the proportion of G143 and A143 alleles in an isolate may determine its QoI resistance level.


Assuntos
Ascomicetos/genética , Citocromos b/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Proteínas Fúngicas/genética , Estrobilurinas/farmacologia , Alelos , Ascomicetos/fisiologia , Farmacorresistência Fúngica/genética , Fungicidas Industriais/farmacologia , Frequência do Gene , Mutação , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase/métodos , Espanha
16.
BMC Genomics ; 18(1): 365, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28486968

RESUMO

BACKGROUND: The pPT23A family of plasmids appears to be indigenous to the plant pathogen Pseudomonas syringae and these plasmids are widely distributed and widely transferred among pathovars of P. syringae and related species. pPT23A-family plasmids (PFPs) are sources of accessory genes for their hosts that can include genes important for virulence and epiphytic colonization of plant leaf surfaces. The occurrence of repeated sequences including duplicated insertion sequences on PFPs has made obtaining closed plasmid genome sequences difficult. Therefore, our objective was to obtain complete genome sequences from PFPs from divergent P. syringae pathovars and also from strains of P. syringae pv. syringae isolated from different hosts. RESULTS: The eight plasmids sequenced ranged in length from 61.6 to 73.8 kb and encoded from 65 to 83 annotated orfs. Virulence genes including type III secretion system effectors were encoded on two plasmids, and one of these, pPt0893-29 from P. syringae pv. tabaci, encoded a wide variety of putative virulence determinants. The PFPs from P. syringae pv. syringae mostly encoded genes of importance to ecological fitness including the rulAB determinant conferring tolerance to ultraviolet radiation. Heavy metal resistance genes encoding resistance to copper and arsenic were also present in a few plasmids. The discovery of part of the chromosomal genomic island GI6 from P. syringae pv. syringae B728a in two PFPs from two P. syringae pv. syringae hosts is further evidence of past intergenetic transfers between plasmid and chromosomal DNA. Phylogenetic analyses also revealed new subgroups of the pPT23A plasmid family and confirmed that plasmid phylogeny is incongruent with P. syringae pathovar or host of isolation. In addition, conserved genes among seven sequenced plasmids within the same phylogenetic group were limited to plasmid-specific functions including maintenance and transfer functions. CONCLUSIONS: Our sequence analysis further revealed that PFPs from P. syringae encode suites of accessory genes that are selected at species (universal distribution), pathovar (interpathovar distribution), and population levels (intrapathovar distribution). The conservation of type IV secretion systems encoding conjugation functions also presumably contributes to the distribution of these plasmids within P. syringae populations.


Assuntos
Genômica , Plasmídeos/genética , Pseudomonas syringae/genética , Análise de Sequência de DNA , Evolução Molecular , Filogenia
17.
New Phytol ; 213(4): 1961-1973, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27864969

RESUMO

The obligate biotrophic fungal pathogen Podosphaera xanthii is the main causal agent of powdery mildew in cucurbit crops all over the world. A major limitation of molecular studies of powdery mildew fungi (Erysiphales) is their genetic intractability. In this work, we describe a robust method based on the promiscuous transformation ability of Agrobacterium tumefaciens for reliable transformation of P. xanthii. The A. tumefaciens-mediated transformation (ATMT) system yielded transformants of P. xanthii with diverse transferred DNA (T-DNA) constructs. Analysis of the resultant transformants showed the random integration of T-DNA into the P. xanthii genome. The integrations were maintained in successive generations in the presence of selection pressure. Transformation was found to be transient, because in the absence of selection agent, the introduced genetic markers were lost due to excision of T-DNA from the genome. The ATMT system represents a potent tool for genetic manipulation of P. xanthii and will likely be useful for studying other biotrophic fungi. We hope that this method will contribute to the development of detailed molecular studies of the intimate interaction established between powdery mildew fungi and their host plants.


Assuntos
Agrobacterium tumefaciens/metabolismo , Ascomicetos/genética , Cucurbita/microbiologia , Doenças das Plantas/microbiologia , Transformação Genética , DNA Bacteriano/genética , Genoma Fúngico , Mitose
18.
Plant Dis ; 101(7): 1306-1313, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30682955

RESUMO

Gray mold, caused by the necrotrophic fungus Botrytis cinerea., is one of the most economically important diseases of strawberry. Gray mold control involves the application of fungicides throughout the strawberry growing season; however, B. cinerea isolates resistant to multiple classes of site-specific fungicides have been recently reported in the Spanish gray mold population. Succinate dehydrogenase inhibitors (SDHI) constitute a relatively novel class of fungicides registered for gray mold control representing new alternatives for strawberry growers. In the present study, 37 B. cinerea isolates previously characterized for their sensitivity to boscalid and amino acid changes in the SdhB protein were used to determine the effective concentration that reduces mycelial growth by 50% (EC50) to fluopyram, fluxapyroxad, and penthiopyrad. The present study was also conducted to obtain discriminatory doses to monitor SDHI fungicide resistance in 580 B. cinerea isolates collected from 27 commercial fields in Spain during 2014, 2015, and 2016. The EC50 values ranged from 0.01 to >100 µg/ml for fluopyram, <0.01 to 4.19 µg/ml for fluxapyroxad, and, finally, <0.01 to 59.65 µg/ml for penthiopyrad. Based on these results, as well as findings from a previous publication, the discriminatory doses chosen to examine sensitivities to boscalid, fluopyram, fluxapyroxad, and penthiopyrad were 100, 15, 1, and 6 µg/ml, respectively. Over the course of the 3-year monitoring period, the overall frequencies of resistance to the four SDHI were 56.9, 6.9, 12.9, and 24.6%, respectively. The frequency of boscalid-resistant isolates decreased from 73 to 41% over the years; however, the fluopyram-resistant isolates increased from 5 to 10% after 1 year of registration. Four SDHI resistance patterns were observed in our population, which included patterns I (30%; resistance to boscalid), II (13.8%; resistance to boscalid and penthiopyrad), III (5.7%; boscalid, fluxapyroxad, and penthiopyrad), and IV (7.9%; resistance to boscalid, fluopyram, fluxapyroxad, and penthiopyrad). Patterns I and II were associated with the amino acid substitutions H272R and H272Y; pattern III was associated only with the H272Y mutation; and, finally, pattern IV was associated with the N230I allele in the SdhB subunit. For gray mold management, it is suggested that the simultaneous use of boscalid and penthiopyrad should be limited to one application per season; however, fluxapyroxad and, especially, fluopyram could be used as valid SDHI alternatives for gray mold control, although they should be applied with caution.

19.
Plant Dis ; 101(7): 1086-1093, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30682963

RESUMO

Mango leaves and inflorescences infected by powdery mildew in southern Spain were analyzed using multigene sequencing (ITS + 4 single-copy coding genes) to identify the causal agent. Erysiphe quercicola was detected in 97% out of 140 samples, collected in six different orchards in the Malaga region. Among these, a small proportion also yielded E. alphitoides (8% of all samples) and E. alphitoides was found alone in 3% of samples. A phylogenetic approach was completed by cross inoculations between oak and mango, which led to typical symptoms, supporting the conspecificity of oak and mango powdery mildews. To our knowledge, this is the first report of E. quercicola and E. alphitoides causing powdery mildew on mango trees in mainland Spain, and thus mainland Europe, based on unequivocal phylogenetic and biological evidence. Our study thus confirmed the broad host range of both E. quercicola and E. alphitoides. These results have practical implications in terms of the demonstrated ability for host range expansion in powdery mildews. They also open interesting prospects to the elucidation of molecular mechanisms underlying the ability to infect single versus multiple and unrelated host plants since these two closely related powdery mildew species belong to a small clade with both generalist and specialist powdery mildews.

20.
Plant Dis ; 100(11): 2234-2239, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30682911

RESUMO

Botrytis cinerea, causal agent of the gray mold disease, is one of the most economically important fungal pathogens of strawberry worldwide. In Spain, as in other parts of the world, management of gray mold control primarily involves the application of fungicides. To determine the fungicide resistance of the Spanish strawberry field population, 367 B. cinerea isolates were examined from one organic and 13 conventional strawberry fields in Huelva (Spain) in 2014 and 2015. The sensitivities of these isolates to six fungicides used for gray mold management in Spain were examined using a spore germination assay based on previously published discriminatory doses. The frequency of resistance to pyraclostrobin, boscalid, cyprodinil, fenhexamid, iprodione, and fludioxonil was 74.6, 64.8, 37.0, 23.7, 14.7, and 0.8%, respectively. The majority of isolates (35.1%) were resistant to three different fungicides classes. Within these isolates, the most prevalent resistance profile (55.8%) was resistance to pyraclostrobin, boscalid, and cyprodinil, followed by the resistance profile (30.2%) of resistance to pyraclostrobin, boscalid, and fenhexamid. One isolate collected in 2015 was resistant to all six fungicide classes. Resistance to boscalid, fenhexamid, iprodione, and pyraclostrobin was found to be caused by amino acid substitutions on target proteins, including H272R/Y in SdhB, F412I/S/V in Erg27, I365 N/S in Bos1, and G143A in Cytb, respectively. The presence of multifungicide resistance phenotypes in B. cinerea isolates from strawberry fields in Spain must be considered in the development of future resistance management practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA