Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 299(3): 102968, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736898

RESUMO

Photosystem II (PSII), the water:plastoquinone oxidoreductase of oxygenic photosynthesis, contains a heme b559 iron whose axial ligands are provided by histidine residues from the α (PsbE) and ß (PsbF) subunits. PSII assembly depends on accessory proteins that facilitate the step-wise association of its protein and pigment components into a functional complex, a process that is challenging to study due to the low accumulation of assembly intermediates. Here, we examined the putative role of the iron[1Fe-0S]-containing protein rubredoxin 1 (RBD1) as an assembly factor for cytochrome b559, using the RBD1-lacking 2pac mutant from Chlamydomonas reinhardtii, in which the accumulation of PSII was rescued by the inactivation of the thylakoid membrane FtsH protease. To this end, we constructed the double mutant 2pac ftsh1-1, which harbored PSII dimers that sustained its photoautotrophic growth. We purified PSII from the 2pac ftsh1-1 background and found that α and ß cytochrome b559 subunits are still present and coordinate heme b559 as in the WT. Interestingly, immunoblot analysis of dark- and low light-grown 2pac ftsh1-1 showed the accumulation of a 23-kDa fragment of the D1 protein, a marker typically associated with structural changes resulting from photodamage of PSII. Its cleavage occurs in the vicinity of a nonheme iron which binds to PSII on its electron acceptor side. Altogether, our findings demonstrate that RBD1 is not required for heme b559 assembly and point to a role for RBD1 in promoting the proper folding of D1, possibly via delivery or reduction of the nonheme iron during PSII assembly.


Assuntos
Chlamydomonas reinhardtii , Grupo dos Citocromos b , Complexo de Proteína do Fotossistema II , Rubredoxinas , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Heme/metabolismo , Ferro/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Rubredoxinas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo
2.
Plant J ; 116(6): 1582-1599, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37824282

RESUMO

Chloroplast ATP synthase contains subunits of plastid and nuclear genetic origin. To investigate the coordinated biogenesis of this complex, we isolated novel ATP synthase mutants in the green alga Chlamydomonas reinhardtii by screening for high light sensitivity. We report here the characterization of mutants affecting the two peripheral stalk subunits b and b', encoded respectively by the atpF and ATPG genes, and of three independent mutants which identify the nuclear factor MDE1, required to stabilize the chloroplast-encoded atpE mRNA. Whole-genome sequencing revealed a transposon insertion in the 3'UTR of ATPG while mass spectrometry shows a small accumulation of functional ATP synthase in this knock-down ATPG mutant. In contrast, knock-out ATPG mutants, obtained by CRISPR-Cas9 gene editing, fully prevent ATP synthase function and accumulation, as also observed in an atpF frame-shift mutant. Crossing ATP synthase mutants with the ftsh1-1 mutant of the major thylakoid protease identifies AtpH as an FTSH substrate, and shows that FTSH significantly contributes to the concerted accumulation of ATP synthase subunits. In mde1 mutants, the absence of atpE transcript fully prevents ATP synthase biogenesis and photosynthesis. Using chimeric atpE genes to rescue atpE transcript accumulation, we demonstrate that MDE1, a novel octotricopeptide repeat (OPR) protein, genetically targets the atpE 5'UTR. In the perspective of the primary endosymbiosis (~1.5 Gy), the recruitment of MDE1 to its atpE target exemplifies a nucleus/chloroplast interplay that evolved rather recently, in the ancestor of the CS clade of Chlorophyceae, ~300 My ago.


Assuntos
Chlamydomonas reinhardtii , ATPases de Cloroplastos Translocadoras de Prótons , ATPases de Cloroplastos Translocadoras de Prótons/genética , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Plant Cell ; 26(1): 373-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24449688

RESUMO

FtsH is the major thylakoid membrane protease found in organisms performing oxygenic photosynthesis. Here, we show that FtsH from Chlamydomonas reinhardtii forms heterooligomers comprising two subunits, FtsH1 and FtsH2. We characterized this protease using FtsH mutants that we identified through a genetic suppressor approach that restored phototrophic growth of mutants originally defective for cytochrome b6f accumulation. We thus extended the spectrum of FtsH substrates in the thylakoid membranes beyond photosystem II, showing the susceptibility of cytochrome b6f complexes (and proteins involved in the ci heme binding pathway to cytochrome b6) to FtsH. We then show how FtsH is involved in the response of C. reinhardtii to macronutrient stress. Upon phosphorus starvation, photosynthesis inactivation results from an FtsH-sensitive photoinhibition process. In contrast, we identified an FtsH-dependent loss of photosystem II and cytochrome b6f complexes in darkness upon sulfur deprivation. The D1 fragmentation pattern observed in the latter condition was similar to that observed in photoinhibitory conditions, which points to a similar degradation pathway in these two widely different environmental conditions. Our experiments thus provide extensive evidence that FtsH plays a major role in the quality control of thylakoid membrane proteins and in the response of C. reinhardtii to light and macronutrient stress.


Assuntos
Proteases Dependentes de ATP/fisiologia , Proteínas de Algas/fisiologia , Chlamydomonas reinhardtii/enzimologia , Complexo Citocromos b6f/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Estresse Fisiológico , Tilacoides/metabolismo , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Clonagem Molecular , Mutação Puntual
4.
Plant Cell ; 26(1): 353-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24474630

RESUMO

Starving microalgae for nitrogen sources is commonly used as a biotechnological tool to boost storage of reduced carbon into starch granules or lipid droplets, but the accompanying changes in bioenergetics have been little studied so far. Here, we report that the selective depletion of Rubisco and cytochrome b6f complex that occurs when Chlamydomonas reinhardtii is starved for nitrogen in the presence of acetate and under normoxic conditions is accompanied by a marked increase in chlororespiratory enzymes, which converts the photosynthetic thylakoid membrane into an intracellular matrix for oxidative catabolism of reductants. Cytochrome b6f subunits and most proteins specifically involved in their biogenesis are selectively degraded, mainly by the FtsH and Clp chloroplast proteases. This regulated degradation pathway does not require light, active photosynthesis, or state transitions but is prevented when respiration is impaired or under phototrophic conditions. We provide genetic and pharmacological evidence that NO production from intracellular nitrite governs this degradation pathway: Addition of a NO scavenger and of two distinct NO producers decrease and increase, respectively, the rate of cytochrome b6f degradation; NO-sensitive fluorescence probes, visualized by confocal microscopy, demonstrate that nitrogen-starved cells produce NO only when the cytochrome b6f degradation pathway is activated.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Óxido Nítrico/farmacologia , Nitrogênio/metabolismo , Tilacoides/metabolismo , Chlamydomonas reinhardtii/fisiologia , Chlamydomonas reinhardtii/ultraestrutura , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Metabolismo Energético , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Fotossíntese , Proteólise , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
5.
J Biol Chem ; 288(37): 26688-96, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23900844

RESUMO

In oxygenic photosynthesis, two photosystems work in tandem to harvest light energy and generate NADPH and ATP. Photosystem II (PSII), the protein-pigment complex that uses light energy to catalyze the splitting of water, is assembled from its component parts in a tightly regulated process that requires a number of assembly factors. The 2pac mutant of the unicellular green alga Chlamydomonas reinhardtii was isolated and found to have no detectable PSII activity, whereas other components of the photosynthetic electron transport chain, including photosystem I, were still functional. PSII activity was fully restored by complementation with the RBD1 gene, which encodes a small iron-sulfur protein known as a rubredoxin. Phylogenetic evidence supports the hypothesis that this rubredoxin and its orthologs are unique to oxygenic phototrophs and distinct from rubredoxins in Archaea and bacteria (excluding cyanobacteria). Knockouts of the rubredoxin orthologs in the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana were also found to be specifically affected in PSII accumulation. Taken together, our data suggest that this rubredoxin is necessary for normal PSII activity in a diverse set of organisms that perform oxygenic photosynthesis.


Assuntos
Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Complexo de Proteína do Fotossistema II/metabolismo , Rubredoxinas/química , Sequência de Aminoácidos , Arabidopsis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Clorofila/química , Sequência Conservada , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Fenótipo , Fotossíntese , Filogenia , Rubredoxinas/genética , Sementes/metabolismo , Especificidade da Espécie , Espectrofotometria , Synechocystis/metabolismo
6.
Elife ; 122023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37986577

RESUMO

Photosynthesis is one of the most important reactions for sustaining our environment. Photosystem II (PSII) is the initial site of photosynthetic electron transfer by water oxidation. Light in excess, however, causes the simultaneous production of reactive oxygen species (ROS), leading to photo-oxidative damage in PSII. To maintain photosynthetic activity, the PSII reaction center protein D1, which is the primary target of unavoidable photo-oxidative damage, is efficiently degraded by FtsH protease. In PSII subunits, photo-oxidative modifications of several amino acids such as Trp have been indeed documented, whereas the linkage between such modifications and D1 degradation remains elusive. Here, we show that an oxidative post-translational modification of Trp residue at the N-terminal tail of D1 is correlated with D1 degradation by FtsH during high-light stress. We revealed that Arabidopsis mutant lacking FtsH2 had increased levels of oxidative Trp residues in D1, among which an N-terminal Trp-14 was distinctively localized in the stromal side. Further characterization of Trp-14 using chloroplast transformation in Chlamydomonas indicated that substitution of D1 Trp-14 to Phe, mimicking Trp oxidation enhanced FtsH-mediated D1 degradation under high light, although the substitution did not affect protein stability and PSII activity. Molecular dynamics simulation of PSII implies that both Trp-14 oxidation and Phe substitution cause fluctuation of D1 N-terminal tail. Furthermore, Trp-14 to Phe modification appeared to have an additive effect in the interaction between FtsH and PSII core in vivo. Together, our results suggest that the Trp oxidation at its N-terminus of D1 may be one of the key oxidations in the PSII repair, leading to processive degradation by FtsH.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteína do Fotossistema II/genética , Triptofano/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Cloroplastos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metaloendopeptidases/metabolismo
7.
C R Biol ; 345(2): 15-38, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36847462

RESUMO

Microalgae are prominent aquatic organisms, responsible for about half of the photosynthetic activity on Earth. Over the past two decades, breakthroughs in genomics and ecosystem biology, as well as the development of genetic resources in model species, have redrawn the boundaries of our knowledge on the relevance of these microbes in global ecosystems. However, considering their vast biodiversity and complex evolutionary history, our comprehension of algal biology remains limited. As algae rely on light, both as their main source of energy and for information about their environment, we focus here on photosynthesis, photoperception, and chloroplast biogenesis in the green alga Chlamydomonas reinhardtii and marine diatoms. We describe how the studies of light-driven processes are key to assessing functional biodiversity in evolutionary distant microalgae. We also emphasize that integration of laboratory and environmental studies, and dialogues between different scientific communities are both timely and essential to understand the life of phototrophs in complex ecosystems and to properly assess the consequences of environmental changes on aquatic environments globally.


Les microalgues, organismes aquatiques majeurs, sont responsables de la moitié de l'activité photosynthétique planétaire. La lumière représente pour les microalgues une source d'énergie ainsi que d'informations sur leur environnement. Ces 20 dernières années, les progrès en génomique et biologie des écosystèmes et la disponibilité de ressources génétiques pour de nouvelles espèces modèles ont permis d'apprécier leur importance dans les écosystèmes globaux. Néanmoins, du fait de leur grande diversité et de leur histoire évolutive complexe, notre compréhension de la biologie des microalgues reste limitée. Nous nous concentrons ici sur la photosynthèse, la photoperception, et la biogenèse des plastes chez l'algue verte Chlamydomonas reinhardtii et les diatomées marines. Nous décrivons comment l'étude des processus gouvernés par la lumière ouvre de nouvelles perspectives pour l'étude de la biodiversité fonctionnelle des microalgues. Nous soulignons combien seule l'intégration d'études en laboratoire et en contexte environnemental et le dialogue entre les communautés scientifiques concernées permettront de comprendre la vie de ces phototrophes dans des écosystèmes complexes, et d'évaluer correctement les conséquences des changements environnementaux sur les milieux aquatiques.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Ecossistema , Fotossíntese , Biodiversidade , Chlamydomonas reinhardtii/genética
8.
Sci Adv ; 7(52): eabj0055, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936440

RESUMO

Photosynthesis fuels life on Earth using sunlight as energy source. However, light has a simultaneous detrimental effect on the enzyme triggering photosynthesis and producing oxygen, photosystem II (PSII). Photoinhibition, the light-dependent decrease of PSII activity, results in a major limitation to aquatic and land photosynthesis and occurs upon all environmental stress conditions. In this work, we investigated the molecular origins of photoinhibition focusing on the paradoxical energy dissipation process of unknown nature coinciding with PSII damage. Integrating spectroscopic, biochemical, and computational approaches, we demonstrate that the site of this quenching process is the PSII reaction center. We propose that the formation of quenching and the closure of PSII stem from the same event. We lastly reveal the heterogeneity of PSII upon photoinhibition using structure-function modeling of excitation energy transfer. This work unravels the functional details of the damage-induced energy dissipation at the heart of photosynthesis.

9.
Mol Plant ; 10(1): 115-130, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27742488

RESUMO

The green alga Chlamydomonas reinhardtii contains several light-harvesting chlorophyll a/b complexes (LHC): four major LHCIIs, two minor LHCIIs, and nine LHCIs. We characterized three chlorophyll b-less mutants to assess the effect of chlorophyll b deficiency on the function, assembly, and stability of these chlorophyll a/b binding proteins. We identified point mutations in two mutants that inactivate the CAO gene responsible for chlorophyll a to chlorophyll b conversion. All LHCIIs accumulated to wild-type levels in a CAO mutant but their light-harvesting function for photosystem II was impaired. In contrast, most LHCIs accumulated to wild-type levels in the mutant and their light-harvesting capability for photosystem I remained unaltered. Unexpectedly, LHCI accumulation and the photosystem I functional antenna size increased in the mutant compared with in the wild type when grown in dim light. When the CAO mutation was placed in a yellow-in-the-dark background (yid-BF3), in which chlorophyll a synthesis remains limited in dim light, accumulation of the major LHCIIs and of most LHCIs was markedly reduced, indicating that sustained synthesis of chlorophyll a is required to preserve the proteolytic resistance of antenna proteins. Indeed, after crossing yid-BF3 with a mutant defective for the thylakoid FtsH protease activity, yid-BF3-ftsh1 restored wild-type levels of LHCI, which defines LHCI as a new substrate for the FtsH protease.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Clorofila/fisiologia , Alelos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efeitos da radiação , Clorofila/biossíntese , Clorofila/genética , Proteínas de Ligação à Clorofila/genética , Luz , Oxigenases/metabolismo , Mutação Puntual , Proteínas das Membranas dos Tilacoides/metabolismo
10.
Mol Plant ; 10(1): 99-114, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27702692

RESUMO

In Chlamydomonas reinhardtii, the major protease involved in the maintenance of photosynthetic machinery in thylakoid membranes, the FtsH protease, mostly forms large hetero-oligomers (∼1 MDa) comprising FtsH1 and FtsH2 subunits, whatever the light intensity for growth. Upon high light exposure, the FtsH subunits display a shorter half-life, which is counterbalanced by an increase in FTSH1/2 mRNA levels, resulting in the modest upregulation of FtsH1/2 proteins. Furthermore, we found that high light increases the protease activity through a hitherto unnoticed redox-controlled reduction of intermolecular disulfide bridges. We isolated a Chlamydomonas FTSH1 promoter-deficient mutant, ftsh1-3, resulting from the insertion of a TOC1 transposon, in which the high light-induced upregulation of FTSH1 gene expression is largely lost. In ftsh1-3, the abundance of FtsH1 and FtsH2 proteins are loosely coupled (decreased by 70% and 30%, respectively) with no formation of large and stable homo-oligomers. Using strains exhibiting different accumulation levels of the FtsH1 subunit after complementation of ftsh1-3, we demonstrate that high light tolerance is tightly correlated with the abundance of the FtsH protease. Thus, the response of Chlamydomonas to light stress involves higher levels of FtsH1/2 subunits associated into large complexes with increased proteolytic activity.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydomonas reinhardtii/metabolismo , Luz , Metaloproteases/metabolismo , Proteínas das Membranas dos Tilacoides/metabolismo , Proteínas de Bactérias/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efeitos da radiação , Metaloproteases/genética , Oxirredução , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteólise , Supressão Genética , Proteínas das Membranas dos Tilacoides/genética
11.
FEBS J ; 278(22): 4189-97, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21955699

RESUMO

Cytochromes of the c-type contain hemes covalently attached via one or, more generally, two thioether bonds between the vinyls of heme b and the thiols of cysteine residues of apocytochromes. This post-translational modification relies on membrane-associated specific biogenesis proteins, referred to as cytochrome c maturation systems. At least three different versions (i.e. Systems I-III) are found on the positive side of bioenergetic membranes in different organisms and compartments. The present minireview is concerned with systems on the negative side of the membranes. It describes System IV, also referred to as cofactor assembly on complex C subunit B, for heme binding on cytochrome b(6) through one thioether bond; this covalent heme is usually called c(i) . This system is found in all organisms with oxygenic photosynthesis but not in Firmicutes, although they also have a cytochrome b protein with an additional heme c(i) covalently attached via a single thioether bond.


Assuntos
Membrana Celular/metabolismo , Citocromos c/metabolismo , Metabolismo Energético , Heme/análogos & derivados , Sequência de Aminoácidos , Animais , Heme/metabolismo , Humanos , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional
12.
Nat Commun ; 2: 301, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21556055

RESUMO

Central in respiration or photosynthesis, the cytochrome bc(1) and b(6)f complexes are regarded as functionally similar quinol oxidoreductases. They both catalyse a redox loop, the Q-cycle, which couples electron and proton transfer. This loop involves a bifurcated electron transfer step considered as being mechanistically mandatory, making the Q-cycle indispensable for growth. Attempts to falsify this paradigm in the case of cytochrome bc(1) have failed. The rapid proteolytic degradation of b(6)f complexes bearing mutations aimed at hindering the Q-cycle has precluded so far the experimental assessment of this model in the photosynthetic chain. Here we combine mutations in Chlamydomonas that inactivate the redox loop but preserve high accumulation levels of b(6)f complexes. The oxidoreductase activity of these crippled complexes is sufficient to sustain photosynthetic growth, which demonstrates that the Q-cycle is dispensable for oxygenic photosynthesis.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Complexo Citocromos b6f/metabolismo , Oxirredutases/metabolismo , Fotossíntese/fisiologia , Benzoquinonas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Complexo Citocromos b6f/análise , Complexo Citocromos b6f/genética , Citocromos f/metabolismo , Transporte de Elétrons , Heme/deficiência , Hidroquinonas , Immunoblotting , Mutação
13.
J Cell Biol ; 185(7): 1195-207, 2009 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-19564403

RESUMO

In chloroplasts, binding of a c'-heme to cytochrome b(6) on the stromal side of the thylakoid membranes requires a specific mechanism distinct from the one at work for c-heme binding to cytochromes f and c(6) on the lumenal side of membranes. Here, we show that the major protein components of this pathway, the CCBs, are bona fide transmembrane proteins. We demonstrate their association in a series of hetero-oligomeric complexes, some of which interact transiently with cytochrome b(6) in the process of heme delivery to the apoprotein. In addition, we provide preliminary evidence for functional assembly of cytochrome b(6)f complexes even in the absence of c'-heme binding to cytochrome b(6). Finally, we present a sequential model for apo- to holo-cytochrome b(6) maturation integrated within the assembly pathway of b(6)f complexes in the thylakoid membranes.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Citocromos b6/biossíntese , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/biossíntese , Tilacoides/enzimologia , Animais , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/genética , Citocromos b6/química , Citocromos b6/genética , Dimerização , Eletroforese , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo
14.
J Biol Chem ; 283(36): 24608-16, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18593701

RESUMO

We recently characterized a novel heme biogenesis pathway required for heme c(i)' covalent binding to cytochrome b6 in Chlamydomonas named system IV or CCB (cofactor assembly, complex C (b6f), subunit B (PetB)). To find out whether this CCB pathway also operates in higher plants and extend the knowledge of the c-type cytochrome biogenesis, we studied Arabidopsis insertion mutants in the orthologs of the CCB genes. The ccb1, ccb2, and ccb4 mutants show a phenotype characterized by a deficiency in the accumulation of the subunits of the cytochrome b6f complex and lack covalent heme binding to cytochrome b6. These mutants were functionally complemented with the corresponding wild type cDNAs. Using fluorescent protein reporters, we demonstrated that the CCB1, CCB2, CCB3, and CCB4 proteins are targeted to the chloroplast compartment of Arabidopsis. We have extended our study to the YGGT family, to which CCB3 belongs, by studying insertion mutants of two additional members of this family for which no mutants were previously characterized, and we showed that they are not functionally involved in the CCB system. Thus, we demonstrate the ubiquity of the CCB proteins in chloroplast heme c(i)' binding.


Assuntos
Proteínas de Algas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cloroplastos/enzimologia , Complexo Citocromos b6f/metabolismo , Citocromos c/genética , Proteínas de Algas/genética , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Chlamydomonas/enzimologia , Chlamydomonas/genética , Cloroplastos/genética , Complexo Citocromos b6f/genética , Citocromos c/metabolismo , Heme/genética , Heme/metabolismo , Mutagênese Insercional , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte Proteico/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
15.
Proc Natl Acad Sci U S A ; 104(23): 9906-10, 2007 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-17535914

RESUMO

Oxygenic photosynthesis is an important bioenergetic process that maintains the Earth's atmosphere and allows carbon fixation. A critical enzyme in this process, the cytochrome b(6)f complex, differs from other protein complexes of the same family by an unusual covalently attached cofactor chemically defined as a c' heme. We have identified a set of pioneer proteins that carry the biogenesis of this c' heme and started their characterization. They are encoded by the genomes of all organisms performing oxygenic photosynthesis, whatever their phylogenetic distances. These proteins are thus among the few that distinguish photosynthetic cells evolving oxygen from other types of living cells.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/fisiologia , Complexo Citocromos b6f/metabolismo , Heme/metabolismo , Complexos Multiproteicos/biossíntese , Fotossíntese/fisiologia , Filogenia , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Teste de Complementação Genética , Funções Verossimilhança , Medições Luminescentes , Modelos Genéticos , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Análise de Sequência de DNA
16.
J Biol Chem ; 277(44): 41865-71, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12207018

RESUMO

The time course of electron transfer in vitro between soluble domains of the Rieske iron-sulfur protein (ISP) and cytochrome f subunits of the cytochrome b(6)f complex of oxygenic photosynthesis was measured by stopped-flow mixing. The domains were derived from Chlamydomonas reinhardtii and expressed in Escherichia coli. The expressed 142-residue soluble ISP apoprotein was reconstituted with the [2Fe-2S] cluster. The second-order rate constant, k(2)((ISP-f)) = 1.5 x 10(6) m(-1) s(-1), for ISP to cytochrome f electron transfer was <10(-2) of the rate constant at low ionic strength, k(2)((f-PC))(> 200 x 10(6) m(-1) s(-1)), for the reduction of plastocyanin by cytochrome f, and approximately 1/30 of k(2)((f-PC)) at the ionic strength estimated for the thylakoid interior. In contrast to k(2)((f-PC)), k(2)((ISP-f)) was independent of pH and ionic strength, implying no significant role of electrostatic interactions. Effective pK values of 6.2 and 8.3, respectively, of oxidized and reduced ISP were derived from the pH dependence of the amplitude of cytochrome f reduction. The first-order rate constant, k(1)((ISP-f)), predicted from k(2)((ISP-f)) is approximately 10 and approximately 150 times smaller than the millisecond and microsecond phases of cytochrome f reduction observed in vivo. It is proposed that in the absence of electrostatic guidance, a productive docking geometry for fast electron transfer is imposed by the guided trajectory of the ISP extrinsic domain. The requirement of a specific electrically neutral docking configuration for ISP electron transfer is consistent with structure data for the related cytochrome bc(1) complex.


Assuntos
Citocromos/química , Complexo III da Cadeia de Transporte de Elétrons , Proteínas Ferro-Enxofre/química , Citocromos f , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Cinética , Oxirredução
17.
J Biol Chem ; 279(43): 44621-7, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15316016

RESUMO

We have addressed the functional and structural roles of three domains of the chloroplast Rieske iron-sulfur protein; that is, the flexible hinge that connects the transmembrane helix to the soluble cluster-bearing domain, the N-terminal stromal protruding domain, and the transmembrane helix. To this aim mutants were generated in the green alga Chlamydomonas reinhardtii. Their capacities to assemble the cytochrome b6f complex, perform plastoquinol oxidation, and signal redox-induced activation of the light-harvesting complex II kinase during state transition were tested in vivo. Deletion of one residue and extensions of up to five residues in the flexible hinge had no significant effect on complex accumulation or electron transfer efficiency. Deletion of three residues (Delta3G) dramatically decreased reaction rates by a factor of approximately 10. These data indicate that the chloroplast iron-sulfur protein-linking domain is much more flexible than that of its counterpart in mitochondria. Despite greatly slowed catalysis in the Delta3G mutant, there was no apparent delay in light-harvesting complex II kinase activation or state transitions. This indicates that conformational changes occurring in the Rieske protein did not represent a limiting step for kinase activation within the time scale tested. No phenotype could be associated with mutations in the N-terminal stromal-exposed domain. In contrast, the N17V mutation in the Rieske protein transmembrane helix resulted in a large decrease in the cytochrome f synthesis rate. This reveals that the Rieske protein transmembrane helix plays an active role in assembly-mediated control of cytochrome f synthesis. We propose a structural model to interpret this phenomenon based on the C. reinhardtii cytochrome b6f structure.


Assuntos
Cloroplastos/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Transporte de Elétrons , Proteínas Ferro-Enxofre/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Catálise , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Chlamydomonas reinhardtii/metabolismo , Complexo Citocromos b6f/química , Citocromos f/metabolismo , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Deleção de Genes , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Fenótipo , Fosforilação , Complexo de Proteína do Fotossistema II/química , Plasmídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Tilacoides/metabolismo , Fatores de Tempo
18.
EMBO J ; 22(4): 807-15, 2003 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-12574117

RESUMO

The Tat pathway is a major route for protein export in prokaryotes and for protein targeting to thylakoids in chloroplasts. Based on in vitro studies, protein translocation through this pathway is thought to be strictly dependent on a transmembrane delta pH. In this paper, we assess the delta pH sensitivity of the Tat pathway in vivo. Using Chlamydomonas reinhardtii, we observed changes in the efficiency of thylakoid targeting in vivo by mutating the Tat signal of the Rieske protein. We then employed two endogenous pH probes located on the lumen side of the thylakoid membranes to estimate spectroscopically the delta pH in vivo. Using experimental conditions in which the trans-thylakoid delta pH was almost zero, we found no evidence for a delta pH dependence of the Tat pathway in vivo. We confirmed this observation in higher plants using attached barley leaves. We conclude that the Tat pathway does not require a delta pH under physiological conditions, but becomes delta pH sensitive when probed in vitro/in organello because of the loss of some critical intracellular factors.


Assuntos
Proteínas de Arabidopsis , Grupo dos Citocromos b/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema II , Proteínas de Plantas , Sinais Direcionadores de Proteínas/genética , Tilacoides/metabolismo , Animais , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Grupo dos Citocromos b/metabolismo , Complexo Citocromos b6f , Hordeum/metabolismo , Concentração de Íons de Hidrogênio , Ionóforos/farmacologia , Mutação , Nigericina/farmacologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Transporte Proteico/fisiologia , Tilacoides/efeitos dos fármacos
19.
Biochemistry ; 43(13): 3956-68, 2004 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-15049703

RESUMO

The three-dimensional structure of the cytochrome b(6)f complex disclosed the unexpected presence of a new heme c(i) [Stroebel, D., Choquet, Y., Popot, J.-L., and Picot, D. (2003) Nature 426, 413-418; Kurisu, G., Zhang, H., Smith, J. L., and Cramer, W. A. (2003) Science 302, 1009-1014]. Here we present a biochemical, spectroscopic, and mutagenesis study of this unusual heme binding in Chlamydomonas reinhardtii. As predicted by the structure data, we identify a Cys(35)-containing proteolytic fragment (Tyr(25)-Lys(111)) from cytochrome b(6) as a peptide that covalently binds a heme. Resonance Raman spectra of cyt b(6)f complexes show particular frequencies in nu(2), nu(3), nu(4), and nu(8) regions that identify this extra heme as a ferrous c'-like heme under a five-coordinated high-spin state. The set of frequencies is consistent with a coordination by either a water molecule or a hydroxide ion. Other changes in resonance Raman bands, observed in the mid- and low-frequency regions, point to a modification in conformation and/or environment of at least one b heme methyl and/or propionate group. Site-directed mutagenesis of apocytochrome b(6), leading to a Cys(35)Val substitution, generates Chlamydomonas strains that are unable to assemble cytochrome b(6)f complexes. On the basis of the mutant phenotype, we discuss the participation, in the covalent binding of heme c(i), of the nuclear CCB factors that we identified previously as controlling the apo to holo conversion of cytochrome b(6) [Kuras, R., de Vitry, C., Choquet, Y., Girard-Bascou, J., Culler, D., Büschlen, S., Merchant, S., and Wollman, F.-A. (1997) J. Biol. Chem. 272, 32427-32435].


Assuntos
Citocromos b6/química , Heme/análogos & derivados , Heme/química , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Sequência Conservada/genética , Cisteína/genética , Citocromos b6/genética , Dimerização , Eletroforese em Gel de Poliacrilamida , Endopeptidases/química , Hidrólise , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Peroxidase/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Análise Espectral Raman/métodos , Valina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA