Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Angew Chem Int Ed Engl ; 63(10): e202315773, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38010301

RESUMO

Asymmetric hydrogenation finds widespread application in academia and industry. And indeed, a number of processes have been implemented for the production of pharma and agro intermediates as well as flavors & fragrances. Although these processes are all based on the use of late transition metals as catalysts, there is an increasing interest in the use of base metal catalysis in view of their lower cost and the expected different substrate scope. Catalysts based on cobalt have already shown their potential in enantioselective hydrogenation chemistry. This review outlines the impressive progress made in recent years on cobalt-catalyzed asymmetric hydrogenation of different unsaturated substrates. We also illustrate the ligand dependent substrate specificity as well as the mechanistic variability in detail. This may well guide further catalyst development in this research area.

2.
Molecules ; 28(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687039

RESUMO

Sulfur-protected enantiopure P-chiral 1-phosphanorbornane silyl ethers 5a,b are obtained in high yields via the reaction of the hydroxy group of P-chiral 1-phosphanorbornane alcohol 4 with tert-butyldimethylsilyl chloride (TBDMSCl) and triphenylsilyl chloride (TPSCl). The corresponding optically pure silyl ethers 5a,b are purified via crystallization and fully structurally characterized. Desulfurization with excess Raney nickel gives access to bulky monodentate enantiopure phosphorus(III) 1-phosphanorbornane silyl ethers 6a,b which are subsequently applied as ligands in iridium-catalyzed asymmetric hydrogenation of a prochiral ketone and enamide. Better activity and selectivity were observed in the latter case.

3.
Angew Chem Int Ed Engl ; 62(26): e202301329, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-36847781

RESUMO

The enantioselective hydrogenation of cyclic enamides has been achieved using an earth-abundant cobalt-bisphosphine catalyst. Using CoCl2 /(S,S)-Ph-BPE, several trisubstituted carbocyclic enamides were reduced with high activity and excellent enantioselectivity (up to 99 %) to the corresponding saturated amides. The methodology can be extended to the synthesis of chiral amines by base hydrolysis of the hydrogenation products. Preliminary mechanistic investigations reveal the presence of a high spin cobalt (II) species in the catalytic cycle. We propose that the hydrogenation of the carbon-carbon double bond proceeds via a sigma-bond-metathesis pathway.


Assuntos
Amidas , Cobalto , Amidas/química , Hidrogenação , Estereoisomerismo , Catálise , Carbono
4.
J Org Chem ; 86(1): 103-109, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33245661

RESUMO

Aryl boronic acids and esters are important building blocks in API synthesis. The palladium-catalyzed Suzuki-Miyaura borylation is the most common method for their preparation. This paper describes an improvement of the current reaction conditions. By using lipophilic bases such as potassium 2-ethyl hexanoate, the borylation reaction could be achieved at 35 °C in less than 2 h with very low palladium loading (0.5 mol %). A preliminary mechanistic study shows a hitherto unrecognized inhibitory effect by the carboxylate anion on the catalytic cycle, whereas 2-ethyl hexanoate minimizes this inhibitory effect. This improved methodology enables borylation of a wide range of substrates under mild conditions.

5.
Philos Trans A Math Phys Eng Sci ; 379(2209): 20200341, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510924

RESUMO

As the production volume of polymers increases, so does the amount of plastic waste. Plastic recycling is one of the concepts to address in this issue. Unfortunately, only a small fraction of plastic waste is recycled. Even with the development of polymers for closed loop recycling that can be in theory reprocessed infinitely the inherent dilemma is that because of collection, cleaning and separation processes the obtained materials simply are not cost competitive with virgin materials. Chemical upcycling, the conversion of polymers to higher valuable products, either polymeric or monomeric, could mitigate this issue. In the following article, we highlight recent examples in this young but fast-growing field. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)'.

6.
Molecules ; 26(13)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34279416

RESUMO

In this review, we describe the synthesis and use in hydrogen transfer reactions of ruthenacycles and iridacycles. The review limits itself to metallacycles where a ligand is bound in bidentate fashion to either ruthenium or iridium via a carbon-metal sigma bond, as well as a dative bond from a heteroatom or an N-heterocyclic carbene. Pincer complexes fall outside the scope. Described are applications in (asymmetric) transfer hydrogenation of aldehydes, ketones, and imines, as well as reductive aminations. Oxidation reactions, i.e., classical Oppenauer oxidation, which is the reverse of transfer hydrogenation, as well as dehydrogenations and oxidations with oxygen, are described. Racemizations of alcohols and secondary amines are also catalyzed by ruthenacycles and iridacycles.

7.
Chembiochem ; 20(1): 118-125, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30362644

RESUMO

Biocatalytic dealkylation of aryl methyl ethers is an attractive reaction for valorization of lignin components, as well as for deprotection of hydroxy functionalities in synthetic chemistry. We explored the demethylation of various aryl methyl ethers by using an oxidative demethylase from Pseudomonas sp. HR199. The Rieske monooxygenase VanA and its partner electron transfer protein VanB were recombinantly coexpressed in Escherichia coli and they constituted at least 25 % of the total protein content. Enzymatic transformations showed that VanB accepts NADH and NADPH as electron donors. The VanA-VanB system demethylates a number of aromatic substrates, the presence of a carboxylic acid moiety is essential, and the catalysis occurs selectively at the meta position to this carboxylic acid in the aromatic ring. The reaction is inhibited by the by-product formaldehyde. Therefore, we tested three different cascade/tandem reactions for cofactor regeneration and formaldehyde elimination; in particular, conversion was improved by addition of formaldehyde dehydrogenase and formate dehydrogenase. Finally, the biocatalyst was applied for the preparation of protocatechuic acid from vanillic acid, giving a 77 % yield of the desired product. The described reaction may find application in the conversion of lignin components into diverse hydroxyaromatic building blocks and generally offers potential for new, mild methods for efficient unmasking of phenols.


Assuntos
Proteínas de Bactérias/química , Éteres Metílicos/química , Oxigenases de Função Mista/química , Pseudomonas/enzimologia , Aldeído Oxirredutases/química , Proteínas de Bactérias/genética , Biocatálise , Desmetilação , Escherichia coli/genética , Formaldeído/química , Química Verde , Oxigenases de Função Mista/genética , Oxirredução , Fenóis/síntese química , Estudo de Prova de Conceito , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato
8.
Chemistry ; 25(33): 7820-7825, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30973658

RESUMO

Catalytic isomerization of allylic alcohols in ethanol as a green solvent was achieved by using air and moisture stable cobalt (II) complexes in the absence of any additives. Under mild conditions, the cobalt PNP pincer complex substituted with phenyl groups on the phosphorus atoms appeared to be the most active. High rates were obtained at 120 °C, even though the addition of one equivalent of base increases the speed of the reaction drastically. Although some evidence was obtained supporting a dehydrogenation-hydrogenation mechanism, it was proven that this is not the major mechanism. Instead, the cobalt hydride complex formed by dehydrogenation of ethanol is capable of double-bond isomerization through alkene insertion-elimination.

9.
Angew Chem Int Ed Engl ; 58(4): 1129-1133, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30506963

RESUMO

Herein, we report on the use of the iron pincer complex Iron-MACHO-BH, in the base-free transfer hydrogenation of esters with EtOH as a hydrogen source. More than 20 substrates including aromatic and aliphatic esters and lactones were reduced affording the desired primary alcohols and diols with moderate to excellent isolated yields. It is also possible to reduce polyesters to the diols with this method, enabling a novel way of plastic recycling. Reduction of the renewable substrate methyl levulinate proceeds to form 1,4-pentanediol directly. The yields are largely governed by the equilibrium between the alcohol and the ethyl ester.

10.
Angew Chem Int Ed Engl ; 58(11): 3486-3490, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30650227

RESUMO

Use of ZrO2 /SiO2 as a solid acid catalyst in the ring-opening of biobased γ-valerolactone with methanol in the gas phase leads to mixtures of methyl 2-, 3-, and 4-pentenoate (MP) in over 95 % selectivity, containing a surprising 81 % of M4P. This process allows the application of a selective hydroformylation to this mixture to convert M4P into methyl 5-formyl-valerate (M5FV) with 90 % selectivity. The other isomers remain unreacted. Reductive amination of M5FV and ring-closure to ϵ-caprolactam in excellent yield had been reported before. The remaining mixture of 2- and 3-MP was subjected to an isomerising methoxycarbonylation to dimethyl adipate in 91 % yield.

11.
Chemistry ; 24(16): 4043-4049, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29193483

RESUMO

[Fe(PNP)(CO)HCl] (PNP=di-(2-diisopropylphosphanyl-ethyl)amine), activated in situ with KOtBu, is a highly active catalyst for the isomerization of allylic alcohols to ketones without an external hydrogen supply. High reaction rates were obtained at 80 °C, but the catalyst is also sufficiently active at room temperature with most substrates. The reaction follows a self-hydrogen-borrowing mechanism, as verified by DFT calculations. An alternative isomerization through alkene insertion and ß-hydride elimination could be excluded on the basis of a much higher barrier. In alcoholic solvents, the ketone product is further reduced to the saturated alcohol.

12.
Chemistry ; 24(11): 2725-2734, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29282773

RESUMO

Commercially available Ru-MACHOTM -BH is an active catalyst for the hydrogenation of several functional groups and for the dehydrogenation of alcohols. Herein, we report on the new application of this catalyst to the base-free transfer hydrogenation of carbonyl compounds. Ru-MACHOTM -BH proved to be highly active and selective in this transformation, even with α,ß-unsaturated carbonyl compounds as substrates. The corresponding aliphatic, aromatic and allylic alcohols were obtained in excellent yields with catalyst loadings as low as 0.1-0.5 mol % at mild temperatures after very short reaction times. This protocol tolerates iPrOH and EtOH as hydrogen sources. Additionally, scale up to multi-gram amounts was performed without any loss of activity or selectivity. An outer-sphere mechanism has been proposed and the computed kinetics and thermodynamics of crotonaldehyde and 1-phenyl-but-2-en-one are in perfect agreement with the experiment.

13.
Chemistry ; 23(35): 8473-8481, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28382677

RESUMO

The selective hydrogenation of the carbonyl functionality of α,ß-unsaturated aldehydes and ketones is catalysed by ruthenium dichloride complexes bearing a tridentate NNS ligand as well as triphenylphosphine. The tridentate ligand backbone is flexible, as evidenced by the equilibrium observed in solution between the cis- and trans-isomers of the dichloride precatalysts, as well as crystal structures of several of these complexes. The complexes are activated by base in the presence of hydrogen and readily hydrogenate carbonyl functionalities under mild conditions. Despite the activation by base, side reactions are negligible, even for aldehyde substrates, because of the low amount of base. Thus, the corresponding allylic alcohols can be isolated in very good yields on a 10-25 mmol scale. Turnover numbers up to 200 000 were achieved.

14.
J Am Chem Soc ; 138(28): 8900-11, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27310182

RESUMO

The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (ß-O-4)-(ß-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected ß-O-4, ß-5, and ß-ß structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.


Assuntos
Lignina/química , Solventes/química , Acetais/química , Catálise , Dimerização , Formaldeído/química , Concentração de Íons de Hidrogênio , Polimerização
15.
Chemistry ; 22(28): 9528-32, 2016 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-27140832

RESUMO

The use of an equivalent amount of an organic base leads to high enantiomeric excess in the asymmetric hydrogenation of N-benzylated 3-substituted pyridinium salts into the corresponding piperidines. Indeed, in the presence of Et3 N, a Rh-JosiPhos catalyst reduced a range of pyridinium salts with ee values up to 90 %. The role of the base was elucidated with a mechanistic study involving the isolation of the various reaction intermediates and isotopic labeling experiments. Additionally, this study provided some evidence for an enantiodetermining step involving a dihydropyridine intermediate.

16.
Chem Rec ; 16(6): 2783-2796, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27763716

RESUMO

Several strategies can be chosen to convert renewable resources into chemicals. In this account, I exemplify the route that starts with so-called platform chemicals; these are relatively simple chemicals that can be produced in high yield, directly from renewable resources, either via fermentation or via chemical routes. They can be converted into the existing bulk chemicals in a very efficient manner using multistep catalytic conversions. Two examples are given of the conversion of sugars into nylon intermediates. 5-Hydroxymethylfurfural (HMF) can be prepared in good yield from fructose. Two hydrogenation steps convert HMF into 1,6-hexanediol. Oppenauer oxidation converts this product into caprolactone, which in the past, has been converted into caprolactam in a large-scale industrial process by reaction with ammonia. An even more interesting platform chemical is levulinic acid (LA), which can be obtained directly from lignocellulose in good yield by treatment with dilute sulfuric acid at 200°C. Hydrogenation converts LA into gamma-valerolactone, which is ring-opened and esterified in a gas-phase process to a mixture of isomeric methyl pentenoates in excellent selectivity. In a remarkable selective palladium-catalysed isomerising methoxycarbonylation, this mixture is converted in to dimethyl adipate, which is finally hydrolysed to adipic acid. Overall selectivities of both processes are extremely high. The conversion of lignin into chemicals is a much more complicated task in view of the complex nature of lignin. It was discovered that breakage of the most prevalent ß-O-4 bond in lignin occurs not only via the well-documented C3 pathway, but also via a C2 pathway, leading to the formation of highly reactive phenylacetaldehydes. These compounds went largely unnoticed as they immediately recondense on lignin. We have now found that it is possible to prevent this by converting these aldehydes in a tandem reaction, as they are formed. For this purpose, we have used three different methods: acetalisation, hydrogenation, and decarbonylation. These reactions were first established in the tandem reactions of model compounds, but subsequently, we were able to show that this works equally well on organosolv lignin and even on lignocellulose.

17.
J Am Chem Soc ; 137(23): 7456-67, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26001165

RESUMO

Conversion of lignin into well-defined aromatic chemicals is a highly attractive goal but is often hampered by recondensation of the formed fragments, especially in acidolysis. Here, we describe new strategies that markedly suppress such undesired pathways to result in diverse aromatic compounds previously not systematically targeted from lignin. Model studies established that a catalytic amount of triflic acid is very effective in cleaving the ß-O-4 linkage, most abundant in lignin. An aldehyde product was identified as the main cause of side reactions under cleavage conditions. Capturing this unstable compound by reaction with diols and by in situ catalytic hydrogenation or decarbonylation lead to three distinct groups of aromatic compounds in high yields acetals, ethanol and ethyl aromatics, and methyl aromatics. Notably, the same product groups were obtained when these approaches were successfully extended to lignin. In addition, the formation of higher molecular weight side products was markedly suppressed, indicating that the aldehyde intermediates play a significant role in these processes. The described strategy has the potential to be generally applicable for the production of interesting aromatic compounds from lignin.

18.
Chemistry ; 21(51): 18811-20, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26561034

RESUMO

We have studied the mechanism of the palladium-catalyzed reductive Heck reaction of para-substituted enones with 4-iodoanisole by using N,N-diisopropylethylamine (DIPEA) as the reductant. Kinetic studies and in situ spectroscopic analysis have provided a detailed insight into the reaction. Progress kinetic analysis demonstrated that neither catalyst decomposition nor product inhibition occurred during the catalysis. The reaction is first order in the palladium and aryl iodide, and zero order in the activated alkene, N-heterocyclic carbene (NHC) ligand, and DIPEA. The experiments with deuterated solvent ([D7]DMF) and deuterated base ([D15]Et3N) supported the role of the amine as a reductant in the reaction. The palladium complex [Pd(0)(NHC)(1)] has been identified as the resting state. The kinetic experiments by stopped-flow UV/Vis also revealed that the presence of the second substrate, benzylideneacetone 1, slows down the oxidative addition of 4-iodoanisole through its competing coordination to the palladium center. The kinetic and mechanistic studies indicated that the oxidative addition of the aryl iodide is the rate-determining step. Various scenarios for the oxidative addition step have been analyzed by using DFT calculations (bp86/def2-TZVP) that supported the inhibiting effect of substrate 1 by formation of resting state [Pd(0)(NHC)(1)] species at the cost of further increase in the energy barrier of the oxidative addition step.

19.
Angew Chem Int Ed Engl ; 54(14): 4236-40, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25663451

RESUMO

An unprecedented catalytic pathway for oxa-Michael addition reactions of alcohols to unsaturated nitriles has been revealed using a PNN pincer ruthenium catalyst with a dearomatized pyridine backbone. The isolation of a catalytically competent Ru-dieneamido complex from the reaction between the Ru catalyst and pentenenitrile in combination with DFT calculations supports a mechanism in which activation of the nitrile through metal-ligand cooperativity is a key step. The nitrile-derived Ru-N moiety is sufficiently Brønsted basic to activate the alcohol and initiate conjugate addition of the alkoxide to the α,ß-unsaturated fragment. This reaction proceeds in a concerted manner and involves a six-membered transition state. These features allow the reaction to proceed at ambient temperature in the absence of external base.


Assuntos
Nitrilas/química , Rutênio/química , Ligantes
20.
Chemistry ; 20(47): 15434-42, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25264262

RESUMO

The [Ru(CO)H(PNN)] pincer complex based on a dearomatised PNN ligand (PNN: 2-di-tert-butylphosphinomethyl-6-diethylaminomethylpyridine) was examined for its ability to isomerise alkenes. The isomerisation reaction proceeded under mild conditions after activation of the complex with alcohols. Variable-temperature (VT) NMR experiments to investigate the role of the alcohol in the mechanism lend credence to the hypothesis that the first step involves the formation of a rearomatised alkoxide complex. In this complex, the hemilabile diethylamino side-arm can dissociate, allowing alkene binding cis to the hydride, enabling insertion of the alkene into the metal-hydride bond, whereas in the parent complex only trans binding is possible. During this study, a new uncommon Ru(0) coordination complex was also characterised. The scope of the alkene isomerisation reaction was examined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA