Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 386(10): 951-963, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35045226

RESUMO

BACKGROUND: The Ad26.COV2.S vaccine, which was approved as a single-shot immunization regimen, has been shown to be effective against severe coronavirus disease 2019. However, this vaccine induces lower severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S)-specific antibody levels than those induced by messenger RNA (mRNA)-based vaccines. The immunogenicity and reactogenicity of a homologous or heterologous booster in persons who have received an Ad26.COV2.S priming dose are unclear. METHODS: In this single-blind, multicenter, randomized, controlled trial involving health care workers who had received a priming dose of Ad26.COV2.S vaccine, we assessed immunogenicity and reactogenicity 28 days after a homologous or heterologous booster vaccination. The participants were assigned to receive no booster, an Ad26.COV2.S booster, an mRNA-1273 booster, or a BNT162b2 booster. The primary end point was the level of S-specific binding antibodies, and the secondary end points were the levels of neutralizing antibodies, S-specific T-cell responses, and reactogenicity. A post hoc analysis was performed to compare mRNA-1273 boosting with BNT162b2 boosting. RESULTS: Homologous or heterologous booster vaccination resulted in higher levels of S-specific binding antibodies, neutralizing antibodies, and T-cell responses than a single Ad26.COV2.S vaccination. The increase in binding antibodies was significantly larger with heterologous regimens that included mRNA-based vaccines than with the homologous booster. The mRNA-1273 booster was most immunogenic and was associated with higher reactogenicity than the BNT162b2 and Ad26.COV2.S boosters. Local and systemic reactions were generally mild to moderate in the first 2 days after booster administration. CONCLUSIONS: The Ad26.COV2.S and mRNA boosters had an acceptable safety profile and were immunogenic in health care workers who had received a priming dose of Ad26.COV2.S vaccine. The strongest responses occurred after boosting with mRNA-based vaccines. Boosting with any available vaccine was better than not boosting. (Funded by the Netherlands Organization for Health Research and Development ZonMw; SWITCH ClinicalTrials.gov number, NCT04927936.).


Assuntos
Ad26COVS1/imunologia , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , Imunização Secundária , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Vacina BNT162/imunologia , Feminino , Humanos , Interferon gama/sangue , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Método Simples-Cego , Linfócitos T/imunologia
2.
J Virol ; 98(3): e0185023, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38415596

RESUMO

Morbilliviruses are members of the family Paramyxoviridae and are known for their ability to cause systemic disease in a variety of mammalian hosts. The prototypic morbillivirus, measles virus (MeV), infects humans and still causes morbidity and mortality in unvaccinated children and young adults. Experimental infection studies in non-human primates have contributed to the understanding of measles pathogenesis. However, ethical restrictions call for the development of new animal models. Canine distemper virus (CDV) infects a wide range of animals, including ferrets, and its pathogenesis shares many features with measles. However, wild-type CDV infection is almost always lethal, while MeV infection is usually self-limiting. Here, we made five recombinant CDVs, predicted to be attenuated, and compared their pathogenesis to the non-attenuated recombinant CDV in a ferret model. Three viruses were insufficiently attenuated based on clinical signs, fatality, and systemic infection, while one virus was too attenuated. The last candidate virus caused a self-limiting infection associated with transient viremia and viral dissemination to all lymphoid tissues, was shed transiently from the upper respiratory tract, and did not result in acute neurological signs. Additionally, an in-depth phenotyping of the infected white blood cells showed lower infection percentages in all lymphocyte subsets when compared to the non-attenuated CDV. In conclusion, infection models using this candidate virus mimic measles and can be used to study pathogenesis-related questions and to test interventions for morbilliviruses in a natural host species.IMPORTANCEMorbilliviruses are transmitted via the respiratory route but cause systemic disease. The viruses use two cellular receptors to infect myeloid, lymphoid, and epithelial cells. Measles virus (MeV) remains an important cause of morbidity and mortality in humans, requiring animal models to study pathogenesis or intervention strategies. Experimental MeV infections in non-human primates are restricted by ethical and practical constraints, and animal morbillivirus infections in natural host species have been considered as alternatives. Inoculation of ferrets with wild-type canine distemper virus (CDV) has been used for this purpose, but in most cases, the virus overwhelms the immune system and causes highly lethal disease. Introduction of an additional transcription unit and an additional attenuating point mutation in the polymerase yielded a candidate virus that caused self-limiting disease with transient viremia and virus shedding. This rationally attenuated CDV strain can be used for experimental morbillivirus infections in ferrets that reflect measles in humans.


Assuntos
Modelos Animais de Doenças , Vírus da Cinomose Canina , Furões , Sarampo , Infecções por Morbillivirus , Animais , Cães , Humanos , Cinomose/virologia , Vírus da Cinomose Canina/genética , Sarampo/patologia , Vírus do Sarampo/genética , Morbillivirus/genética , Infecções por Morbillivirus/patologia , Primatas , Viremia
3.
J Virol ; 98(3): e0187423, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38329336

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a rare but fatal late neurological complication of measles, caused by persistent measles virus (MeV) infection of the central nervous system. There are no drugs approved for the treatment of SSPE. Here, we followed the clinical progression of a 5-year-old SSPE patient after treatment with the nucleoside analog remdesivir, conducted a post-mortem evaluation of the patient's brain, and characterized the MeV detected in the brain. The quality of life of the patient transiently improved after the first two courses of remdesivir, but a third course had no further clinical effect, and the patient eventually succumbed to his condition. Post-mortem evaluation of the brain displayed histopathological changes including loss of neurons and demyelination paired with abundant presence of MeV RNA-positive cells throughout the brain. Next-generation sequencing of RNA isolated from the brain revealed a complete MeV genome with mutations that are typically detected in SSPE, characterized by a hypermutated M gene. Additional mutations were detected in the polymerase (L) gene, which were not associated with resistance to remdesivir. Functional characterization showed that mutations in the F gene led to a hyperfusogenic phenotype predominantly mediated by N465I. Additionally, recombinant wild-type-based MeV with the SSPE-F gene or the F gene with the N465I mutation was no longer lymphotropic but instead efficiently disseminated in neural cultures. Altogether, this case encourages further investigation of remdesivir as a potential treatment of SSPE and highlights the necessity to functionally understand SSPE-causing MeV.IMPORTANCEMeasles virus (MeV) causes acute, systemic disease and remains an important cause of morbidity and mortality in humans. Despite the lack of known entry receptors in the brain, MeV can persistently infect the brain causing the rare but fatal neurological disorder subacute sclerosing panencephalitis (SSPE). SSPE-causing MeVs are characterized by a hypermutated genome and a hyperfusogenic F protein that facilitates the rapid spread of MeV throughout the brain. No treatment against SSPE is available, but the nucleoside analog remdesivir was recently demonstrated to be effective against MeV in vitro. We show that treatment of an SSPE patient with remdesivir led to transient clinical improvement and did not induce viral escape mutants, encouraging the future use of remdesivir in SSPE patients. Functional characterization of the viral proteins sheds light on the shared properties of SSPE-causing MeVs and further contributes to understanding how those viruses cause disease.


Assuntos
Monofosfato de Adenosina , Alanina , Vírus do Sarampo , Sarampo , Panencefalite Esclerosante Subaguda , Proteínas Virais , Pré-Escolar , Humanos , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/administração & dosagem , Alanina/análogos & derivados , Alanina/uso terapêutico , Autopsia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Progressão da Doença , Evolução Fatal , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sarampo/complicações , Sarampo/tratamento farmacológico , Sarampo/virologia , Vírus do Sarampo/efeitos dos fármacos , Vírus do Sarampo/genética , Vírus do Sarampo/metabolismo , Proteínas Mutantes/análise , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Qualidade de Vida , RNA Viral/análise , RNA Viral/genética , Panencefalite Esclerosante Subaguda/tratamento farmacológico , Panencefalite Esclerosante Subaguda/etiologia , Panencefalite Esclerosante Subaguda/virologia , Proteínas Virais/análise , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Cell Mol Life Sci ; 81(1): 267, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884678

RESUMO

Neutralizing antibodies are considered a correlate of protection against severe human respiratory syncytial virus (HRSV) disease. Currently, HRSV neutralization assays are performed on immortalized cell lines like Vero or A549 cells. It is known that assays on these cell lines exclusively detect neutralizing antibodies (nAbs) directed to the fusion (F) protein. For the detection of nAbs directed to the glycoprotein (G), ciliated epithelial cells expressing the cellular receptor CX3CR1 are required, but generation of primary cell cultures is expensive and labor-intensive. Here, we developed a high-throughput neutralization assay based on the interaction between clinically relevant HRSV grown on primary cells with ciliated epithelial cells, and validated this assay using a panel of infant sera. To develop the high-throughput neutralization assay, we established a culture of differentiated apical-out airway organoids (Ap-O AO). CX3CR1 expression was confirmed, and both F- and G-specific monoclonal antibodies neutralized HRSV in the Ap-O AO. In a side-by-side neutralization assay on Vero cells and Ap-O AO, neutralizing antibody levels in sera from 125 infants correlated well, although titers on Ap-O AO were consistently lower. We speculate that these lower titers might be an actual reflection of the neutralizing antibody capacity in vivo. The organoid-based neutralization assay described here holds promise for further characterization of correlates of protection against HRSV disease.


Assuntos
Anticorpos Neutralizantes , Receptor 1 de Quimiocina CX3C , Testes de Neutralização , Organoides , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Vírus Sincicial Respiratório Humano/imunologia , Anticorpos Neutralizantes/imunologia , Organoides/metabolismo , Organoides/imunologia , Organoides/virologia , Organoides/citologia , Animais , Testes de Neutralização/métodos , Chlorocebus aethiops , Células Vero , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/imunologia , Anticorpos Antivirais/imunologia , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/metabolismo , Lactente , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/virologia , Anticorpos Monoclonais/imunologia
5.
J Infect Dis ; 229(1): 137-146, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37675756

RESUMO

BACKGROUND: Mucosal antibodies play a critical role in preventing SARS-CoV-2 infections or reinfections by blocking the interaction of the receptor-binding domain (RBD) with the angiotensin-converting enzyme 2 (ACE2) receptor on the cell surface. In this study, we investigated the difference between the mucosal antibody response after primary infection and vaccination. METHODS: We assessed longitudinal changes in the quantity and capacity of nasal antibodies to neutralize the interaction of RBD with the ACE2 receptor using the spike protein and RBD from ancestral SARS-CoV-2 (Wuhan-Hu-1), as well as the RBD from the Delta and Omicron variants. RESULTS: Significantly higher mucosal IgA concentrations were detected postinfection vs postvaccination, while vaccination induced higher IgG concentrations. However, ACE2-inhibiting activity did not differ between the cohorts. Regarding whether IgA or IgG drove ACE2 inhibition, infection-induced binding inhibition was driven by both isotypes, while postvaccination binding inhibition was mainly driven by IgG. CONCLUSIONS: Our study provides new insights into the relationship between antibody isotypes and neutralization by using a sensitive and high-throughput ACE2 binding inhibition assay. Key differences are highlighted between vaccination and infection at the mucosal level, showing that despite differences in the response quantity, postinfection and postvaccination ACE2 binding inhibition capacity did not differ.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , COVID-19/prevenção & controle , Vacinação , Imunoglobulina A , Imunoglobulina G , Glicoproteína da Espícula de Coronavírus , Ligação Proteica
6.
Euro Surveill ; 29(17)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38666400

RESUMO

BackgroundFollowing the 2022-2023 mpox outbreak, crucial knowledge gaps exist regarding orthopoxvirus-specific immunity in risk groups and its impact on future outbreaks.AimWe combined cross-sectional seroprevalence studies in two cities in the Netherlands with mathematical modelling to evaluate scenarios of future mpox outbreaks among men who have sex with men (MSM).MethodsSerum samples were obtained from 1,065 MSM attending Centres for Sexual Health (CSH) in Rotterdam or Amsterdam following the peak of the Dutch mpox outbreak and the introduction of vaccination. For MSM visiting the Rotterdam CSH, sera were linked to epidemiological and vaccination data. An in-house developed ELISA was used to detect vaccinia virus (VACV)-specific IgG. These observations were combined with published data on serial interval and vaccine effectiveness to inform a stochastic transmission model that estimates the risk of future mpox outbreaks.ResultsThe seroprevalence of VACV-specific antibodies was 45.4% and 47.1% in Rotterdam and Amsterdam, respectively. Transmission modelling showed that the impact of risk group vaccination on the original outbreak was likely small. However, assuming different scenarios, the number of mpox cases in a future outbreak would be markedly reduced because of vaccination. Simultaneously, the current level of immunity alone may not prevent future outbreaks. Maintaining a short time-to-diagnosis is a key component of any strategy to prevent new outbreaks.ConclusionOur findings indicate a reduced likelihood of large future mpox outbreaks among MSM in the Netherlands under current conditions, but emphasise the importance of maintaining population immunity, diagnostic capacities and disease awareness.


Assuntos
Surtos de Doenças , Homossexualidade Masculina , Humanos , Masculino , Países Baixos/epidemiologia , Estudos Soroepidemiológicos , Estudos Transversais , Homossexualidade Masculina/estatística & dados numéricos , Adulto , Pessoa de Meia-Idade , Vacínia/epidemiologia , Anticorpos Antivirais/sangue , Vacinação/estatística & dados numéricos , Adulto Jovem , Modelos Teóricos , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G/sangue
7.
Euro Surveill ; 29(38)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39301741

RESUMO

In response to the mpox outbreak in 2022 and 2023, widespread vaccination with modified vaccinia Ankara-Bavarian Nordic (MVA-BN, also known as JYNNEOS or Imvanex) was initiated. Here, we demonstrate that orthopoxvirus-specific binding and MVA-neutralising antibodies waned to undetectable levels 1 year post vaccination in at-risk individuals who received two doses of MVA-BN administered subcutaneously with an interval of 4 weeks, without prior smallpox or mpox vaccination. Continuous surveillance is essential to understand the impact of declining antibody levels.


Assuntos
Anticorpos Antivirais , Orthopoxvirus , Vacinação , Humanos , Anticorpos Antivirais/sangue , Orthopoxvirus/imunologia , Países Baixos/epidemiologia , Masculino , Adulto , Feminino , Vacina Antivariólica/administração & dosagem , Vacina Antivariólica/imunologia , Pessoa de Meia-Idade , Anticorpos Neutralizantes/sangue , Surtos de Doenças/prevenção & controle , Varíola/prevenção & controle , Infecções por Poxviridae/prevenção & controle , Mpox/prevenção & controle , Vaccinia virus/imunologia , Adulto Jovem , Adolescente
8.
J Infect Dis ; 228(5): 586-590, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36857443

RESUMO

Modified vaccinia virus Ankara (MVA) is used as a vaccine against monkeypox virus and as a viral vaccine vector. MVA-MERS-S is a vaccine candidate against Middle East respiratory syndrome (MERS)-associated coronavirus. Here, we report that cross-reactive monkeypox virus neutralizing antibodies were detectable in only a single study participant after the first dose of MVA-MERS-S vaccine, in 3 of 10 after the second dose, and in 10 of 10 after the third dose.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Vacinas Virais , Humanos , Anticorpos Amplamente Neutralizantes , Glicoproteína da Espícula de Coronavírus , Monkeypox virus , Anticorpos Antivirais , Vaccinia virus/genética , Infecções por Coronavirus/prevenção & controle , Anticorpos Neutralizantes
9.
J Infect Dis ; 227(5): 651-662, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402141

RESUMO

BACKGROUND: The COVIH study is a prospective coronavirus disease 2019 (COVID-19) vaccination study in 1154 people with HIV (PWH), of whom 14% showed reduced antibody levels after primary vaccination. We evaluated whether an additional vaccination boosts immune responses in these hyporesponders. METHODS: The primary end point was the increase in antibodies 28 days after additional mRNA-1273 vaccination. Secondary end points included neutralizing antibodies, S-specific T-cell and B-cell responses, and reactogenicity. RESULTS: Of the 66 participants, 40 previously received 2 doses ChAdOx1-S, 22 received 2 doses BNT162b2, and 4 received a single dose Ad26.COV2.S. The median age was 63 years (interquartile range [IQR], 60-66), 86% were male, and median CD4+ T-cell count was 650/µL (IQR, 423-941). The mean S1-specific antibody level increased from 35 binding antibody units (BAU)/mL (95% confidence interval [CI], 24-46) to 4317 BAU/mL (95% CI, 3275-5360) (P < .0001). Of all participants, 97% showed an adequate response and the 45 antibody-negative participants all seroconverted. A significant increase in the proportion of PWH with ancestral S-specific CD4+ T cells (P = .04) and S-specific B cells (P = .02) was observed. CONCLUSIONS: An additional mRNA-1273 vaccination induced a robust serological response in 97% of PWH with a hyporesponse after primary vaccination. Clinical Trials Registration. EUCTR2021-001054-57-N.


Assuntos
COVID-19 , Infecções por HIV , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vacina de mRNA-1273 contra 2019-nCoV , Ad26COVS1 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , ChAdOx1 nCoV-19 , Vacinas contra COVID-19 , Estudos Prospectivos , SARS-CoV-2 , Vacinação , Idoso
10.
Clin Infect Dis ; 76(3): e533-e536, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35723273

RESUMO

The emergence of SARS-CoV-2 variants raised questions regarding the durability of immune responses after homologous or heterologous boosters after Ad26.COV2.S-priming. We found that SARS-CoV-2-specific binding antibodies, neutralizing antibodies, and T cells are detectable 5 months after boosting, although waning of antibodies and limited cross-reactivity with Omicron BA.1 was observed.


Assuntos
Ad26COVS1 , COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Pessoal de Saúde , Imunidade
11.
Clin Infect Dis ; 76(3): e188-e199, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35796536

RESUMO

BACKGROUND: The immune response to COVID-19 vaccination is inferior in kidney transplant recipients (KTRs) and to a lesser extent in patients on dialysis or with chronic kidney disease (CKD). We assessed the immune response 6 months after mRNA-1273 vaccination in kidney patients and compared this to controls. METHODS: A total of 152 participants with CKD stages G4/5 (eGFR <30 mL/min/1.73 m2), 145 participants on dialysis, 267 KTRs, and 181 controls were included. SARS-CoV-2 Spike S1 specific IgG antibodies were measured using fluorescent bead-based multiplex-immunoassay, neutralizing antibodies to ancestral, Delta, and Omicron (BA.1) variants by plaque reduction, and T-cell responses by interferon-γ release assay. RESULTS: At 6 months after vaccination, S1-specific antibodies were detected in 100% of controls, 98.7% of CKD G4/5 patients, 95.1% of dialysis patients, and 56.6% of KTRs. These figures were comparable to the response rates at 28 days, but antibody levels waned significantly. Neutralization of the ancestral and Delta variants was detected in most participants, whereas neutralization of Omicron was mostly absent. S-specific T-cell responses were detected at 6 months in 75.0% of controls, 69.4% of CKD G4/5 patients, 52.6% of dialysis patients, and 12.9% of KTRs. T-cell responses at 6 months were significantly lower than responses at 28 days. CONCLUSIONS: Although seropositivity rates at 6 months were comparable to rates at 28 days after vaccination, significantly decreased antibody levels and T-cell responses were observed. The combination of low antibody levels, reduced T-cell responses, and absent neutralization of the newly emerging variants indicates the need for additional boosts or alternative vaccination strategies in KTRs. CLINICAL TRIALS REGISTRATION: NCT04741386.


Assuntos
COVID-19 , Transplante de Rim , Insuficiência Renal Crônica , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunoglobulina G , Diálise Renal , Insuficiência Renal Crônica/terapia , SARS-CoV-2 , Linfócitos T , Vacinação
12.
Clin Infect Dis ; 76(3): e172-e178, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35869843

RESUMO

BACKGROUND: Illness after infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is less severe compared with previous variants. Data on the disease burden in immunocompromised patients are lacking. We investigated the clinical characteristics and outcomes of immunocompromised patients with coronavirus disease 2019 (COVID-19) caused by Omicron. METHODS: Organ transplant recipients, patients on anti-CD20 therapy, and allogenic hematopoietic stem cell transplantation recipients infected with the Omicron variant were included. Characteristics of consenting patients were collected and patients were contacted regularly until symptom resolution. To identify possible risk factors for hospitalization, a univariate logistic analysis was performed. RESULTS: 114 consecutive immunocompromised patients were enrolled. Eighty-nine percent had previously received 3 mRNA vaccinations. While only 1 patient died, 23 (20%) were hospitalized for a median of 11 days. A low SARS-CoV-2 immunoglobulin G (IgG) antibody response (<300 BAU [binding antibody units]/mL) at diagnosis, being older, being a lung transplant recipient, having more comorbidities, and having a higher frailty score were associated with hospital admission (all P < .01). At the end of follow-up, 25% had still not fully recovered. Of the 23 hospitalized patients, 70% had a negative and 92% had a low IgG (<300 BAU/mL) antibody response at admission. Sotrovimab was administered to 17 of these patients, and 1 died. CONCLUSIONS: While the mortality in immunocompromised patients infected with Omicron was low, hospital admission was frequent and the duration of symptoms often prolonged. In addition to vaccination, other interventions are needed to limit the morbidity from COVID-19 in immunocompromised patients.


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Humanos , SARS-CoV-2 , Estudos Prospectivos , Anticorpos Antivirais , Hospedeiro Imunocomprometido , Imunoglobulina G
14.
Am J Transplant ; 23(9): 1411-1424, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37270109

RESUMO

T-cell-mediated help to B cells is required for the development of humoral responses, in which the cytokine interleukin (IL)-21 is key. Here, we studied the mRNA-1273 vaccine-induced SARS-CoV-2-specific memory T-cell IL-21 response, memory B cell response, and immunoglobulin (Ig)G antibody levels in peripheral blood at 28 days after the second vaccination by ELISpot and the fluorescent bead-based multiplex immunoassay, respectively. We included 40 patients with chronic kidney disease (CKD), 34 patients on dialysis, 63 kidney transplant recipients (KTR), and 47 controls. We found that KTR, but not patients with CKD and those receiving dialysis, showed a significantly lower number of SARS-CoV-2-specific IL-21 producing T cells than controls (P < .001). KTR and patients with CKD showed lower numbers of SARS-CoV-2-specific IgG-producing memory B cells when compared with controls (P < .001 and P = .01, respectively). The T-cell IL-21 response was positively associated with the SARS-CoV-2-specific B cell response and the SARS-CoV-2 spike S1-specific IgG antibody levels (both Pearson r = 0.5; P < .001). In addition, SARS-CoV-2-specific B cell responses were shown to be IL-21 dependent. Taken together, we show that IL-21 signaling is important in eliciting robust B cell-mediated immune responses in patients with kidney disease and KTR.


Assuntos
COVID-19 , Nefropatias , Transplante de Rim , Humanos , Vacinas contra COVID-19 , Vacina de mRNA-1273 contra 2019-nCoV , SARS-CoV-2 , Interleucinas , Imunoglobulina G , Anticorpos Antivirais , Imunidade , Transplantados
15.
J Gen Virol ; 104(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36757863

RESUMO

Peste des petits ruminants virus (PPRV) is a highly contagious morbillivirus related to measles and canine distemper virus, mostly affecting small ruminants. The corresponding PPR disease has a high clinical impact in goats and is characterized by fever, oral and nasal erosions, diarrhoea and pneumonia. In addition, massive infection of lymphoid tissues causes lymphopaenia and immune suppression. This results in increased susceptibility to secondary bacterial infections, explaining the observed high mortality in some outbreaks. We studied the pathogenesis of PPR by experimental inoculation of Dutch domestic goats with a recombinant virulent PPRV strain modified to express EGFP and compared it to an EGFP-expressing vaccine strain of PPRV. After intratracheal inoculation with virulent PPRV, animals developed fever, viraemia and leucopaenia, and shed virus from the respiratory and gastro-intestinal tracts. Macroscopic evaluation of fluorescence at the peak of infection 7 days post-inoculation (dpi) showed prominent PPRV infection of the respiratory tract, lymphoid tissues, gastro-intestinal tract, mucosae and skin. Flow cytometry of PBMCs collected over time demonstrated a cell-associated viraemia mediated by infected lymphocytes. At 14 dpi, pathognomonic zebra stripes were detected in the mucosa of the large intestine. In contrast, vaccine strain-inoculated goats remained largely macroscopically fluorescence negative and did not present clinical signs. A low-level viraemia was detected by flow cytometry, but at necropsy no histological lesions were observed. Animals from both groups seroconverted as early as 7 dpi and sera efficiently neutralized virulent PPRV in vitro. Combined, this work presents a study of the pathogenesis of wild type- and vaccine-based PPRV in its natural host. This study shows the strength of recombinant EGFP-expressing viruses in fluorescence-guided pathogenesis studies.


Assuntos
Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Vacinas Virais , Animais , Vírus da Peste dos Pequenos Ruminantes/genética , Peste dos Pequenos Ruminantes/prevenção & controle , Viremia/veterinária , Cabras , Vacinas Virais/genética , Doenças das Cabras/prevenção & controle
16.
J Clin Immunol ; 43(6): 1104-1117, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37231290

RESUMO

PURPOSE: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective long-term protection against COVID-19 is therefore of great importance in these patients, but little is known about the decay of the immune response after primary vaccination. We studied the immune responses 6 months after two mRNA-1273 COVID-19 vaccines in 473 IEI patients and subsequently the response to a third mRNA COVID-19 vaccine in 50 patients with common variable immunodeficiency (CVID). METHODS: In a prospective multicenter study, 473 IEI patients (including X-linked agammaglobulinemia (XLA) (N = 18), combined immunodeficiency (CID) (N = 22), CVID (N = 203), isolated or undefined antibody deficiencies (N = 204), and phagocyte defects (N = 16)), and 179 controls were included and followed up to 6 months after two doses of the mRNA-1273 COVID-19 vaccine. Additionally, samples were collected from 50 CVID patients who received a third vaccine 6 months after primary vaccination through the national vaccination program. SARS-CoV-2-specific IgG titers, neutralizing antibodies, and T cell responses were assessed. RESULTS: At 6 months after vaccination, the geometric mean antibody titers (GMT) declined in both IEI patients and healthy controls, when compared to GMT 28 days after vaccination. The trajectory of this decline did not differ between controls and most IEI cohorts; however, antibody titers in CID, CVID, and isolated antibody deficiency patients more often dropped to below the responder cut-off compared to controls. Specific T cell responses were still detectable in 77% of controls and 68% of IEI patients at 6 months post vaccination. A third mRNA vaccine resulted in an antibody response in only two out of 30 CVID patients that did not seroconvert after two mRNA vaccines. CONCLUSION: A similar decline in IgG titers and T cell responses was observed in patients with IEI when compared to healthy controls 6 months after mRNA-1273 COVID-19 vaccination. The limited beneficial benefit of a third mRNA COVID-19 vaccine in previous non-responder CVID patients implicates that other protective strategies are needed for these vulnerable patients.


Assuntos
COVID-19 , Imunodeficiência de Variável Comum , Doenças da Imunodeficiência Primária , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Estudos Prospectivos , SARS-CoV-2 , Vacinação , Anticorpos Antivirais , Imunoglobulina G , RNA Mensageiro/genética , Imunidade
17.
J Allergy Clin Immunol ; 149(6): 1949-1957, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421449

RESUMO

BACKGROUND: Patients with inborn errors of immunity (IEI) are at increased risk of severe coronavirus disease-2019 (COVID-19). Effective vaccination against COVID-19 is therefore of great importance in this group, but little is known about the immunogenicity of COVID-19 vaccines in these patients. OBJECTIVES: We sought to study humoral and cellular immune responses after mRNA-1273 COVID-19 vaccination in adult patients with IEI. METHODS: In a prospective, controlled, multicenter study, 505 patients with IEI (common variable immunodeficiency [CVID], isolated or undefined antibody deficiencies, X-linked agammaglobulinemia, combined B- and T-cell immunodeficiency, phagocyte defects) and 192 controls were included. All participants received 2 doses of the mRNA-1273 COVID-19 vaccine. Levels of severe acute respiratory syndrome coronavirus-2-specific binding antibodies, neutralizing antibodies, and T-cell responses were assessed at baseline, 28 days after first vaccination, and 28 days after second vaccination. RESULTS: Seroconversion rates in patients with clinically mild antibody deficiencies and phagocyte defects were similar to those in healthy controls, but seroconversion rates in patients with more severe IEI, such as CVID and combined B- and T-cell immunodeficiency, were lower. Binding antibody titers correlated well to the presence of neutralizing antibodies. T-cell responses were comparable to those in controls in all IEI cohorts, with the exception of patients with CVID. The presence of noninfectious complications and the use of immunosuppressive drugs in patients with CVID were negatively correlated with the antibody response. CONCLUSIONS: COVID-19 vaccination with mRNA-1273 was immunogenic in mild antibody deficiencies and phagocyte defects and in most patients with combined B- and T-cell immunodeficiency and CVID. Lowest response was detected in patients with X-linked agammaglobulinemia and in patients with CVID with noninfectious complications. The assessment of longevity of immune responses in these vulnerable patient groups will guide decision making for additional vaccinations.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Anticorpos Neutralizantes , COVID-19 , Doenças Genéticas Inatas , Síndromes de Imunodeficiência , Vacina de mRNA-1273 contra 2019-nCoV/sangue , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/uso terapêutico , Adulto , Agamaglobulinemia/genética , Agamaglobulinemia/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Imunodeficiência de Variável Comum/genética , Imunodeficiência de Variável Comum/imunologia , Doenças Genéticas Inatas/sangue , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Humanos , Síndromes de Imunodeficiência/sangue , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/imunologia , Estudos Prospectivos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
18.
PLoS Med ; 19(10): e1003979, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36301821

RESUMO

BACKGROUND: Vaccines can be less immunogenic in people living with HIV (PLWH), but for SARS-CoV-2 vaccinations this is unknown. In this study we set out to investigate, for the vaccines currently approved in the Netherlands, the immunogenicity and reactogenicity of SARS-CoV-2 vaccinations in PLWH. METHODS AND FINDINGS: We conducted a prospective cohort study to examine the immunogenicity of BNT162b2, mRNA-1273, ChAdOx1-S, and Ad26.COV2.S vaccines in adult PLWH without prior COVID-19, and compared to HIV-negative controls. The primary endpoint was the anti-spike SARS-CoV-2 IgG response after mRNA vaccination. Secondary endpoints included the serological response after vector vaccination, anti-SARS-CoV-2 T-cell response, and reactogenicity. Between 14 February and 7 September 2021, 1,154 PLWH (median age 53 [IQR 44-60] years, 85.5% male) and 440 controls (median age 43 [IQR 33-53] years, 28.6% male) were included in the final analysis. Of the PLWH, 884 received BNT162b2, 100 received mRNA-1273, 150 received ChAdOx1-S, and 20 received Ad26.COV2.S. In the group of PLWH, 99% were on antiretroviral therapy, 97.7% were virally suppressed, and the median CD4+ T-cell count was 710 cells/µL (IQR 520-913). Of the controls, 247 received mRNA-1273, 94 received BNT162b2, 26 received ChAdOx1-S, and 73 received Ad26.COV2.S. After mRNA vaccination, geometric mean antibody concentration was 1,418 BAU/mL in PLWH (95% CI 1322-1523), and after adjustment for age, sex, and vaccine type, HIV status remained associated with a decreased response (0.607, 95% CI 0.508-0.725, p < 0.001). All controls receiving an mRNA vaccine had an adequate response, defined as >300 BAU/mL, whilst in PLWH this response rate was 93.6%. In PLWH vaccinated with mRNA-based vaccines, higher antibody responses were predicted by CD4+ T-cell count 250-500 cells/µL (2.845, 95% CI 1.876-4.314, p < 0.001) or >500 cells/µL (2.936, 95% CI 1.961-4.394, p < 0.001), whilst a viral load > 50 copies/mL was associated with a reduced response (0.454, 95% CI 0.286-0.720, p = 0.001). Increased IFN-γ, CD4+ T-cell, and CD8+ T-cell responses were observed after stimulation with SARS-CoV-2 spike peptides in ELISpot and activation-induced marker assays, comparable to controls. Reactogenicity was generally mild, without vaccine-related serious adverse events. Due to the control of vaccine provision by the Dutch National Institute for Public Health and the Environment, there were some differences between vaccine groups in the age, sex, and CD4+ T-cell counts of recipients. CONCLUSIONS: After vaccination with BNT162b2 or mRNA-1273, anti-spike SARS-CoV-2 antibody levels were reduced in PLWH compared to HIV-negative controls. To reach and maintain the same serological responses as HIV-negative controls, additional vaccinations are probably required. TRIAL REGISTRATION: The trial was registered in the Netherlands Trial Register (NL9214). https://www.trialregister.nl/trial/9214.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Infecções por HIV , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ad26COVS1 , Anticorpos Antivirais , Vacina BNT162 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Infecções por HIV/imunologia , Imunogenicidade da Vacina , Imunoglobulina G , Países Baixos/epidemiologia , Estudos Prospectivos , RNA Mensageiro , SARS-CoV-2 , Vacinas de mRNA
19.
PLoS Pathog ; 16(10): e1008253, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33031460

RESUMO

Measles is characterized by fever and a maculopapular skin rash, which is accompanied by immune clearance of measles virus (MV)-infected cells. Histopathological analyses of skin biopsies from humans and non-human primates (NHPs) with measles rash have identified MV-infected keratinocytes and mononuclear cells in the epidermis, around hair follicles and near sebaceous glands. Here, we address the pathogenesis of measles skin rash by combining data from experimentally infected NHPs, ex vivo infection of human skin sheets and in vitro infection of primary human keratinocytes. Analysis of NHP skin samples collected at different time points following MV inoculation demonstrated that infection in the skin precedes onset of rash by several days. MV infection was detected in lymphoid and myeloid cells in the dermis before dissemination to the epidermal leukocytes and keratinocytes. These data were in good concordance with ex vivo MV infections of human skin sheets, in which dermal cells were more targeted than the epidermal cells. To address viral dissemination to the epidermis and to determine whether the dissemination is receptor-dependent, we performed experimental infections of primary keratinocytes collected from healthy donors. These experiments demonstrated that MV infection of keratinocytes is mainly nectin-4-dependent, and differentiated keratinocytes, which express higher levels of nectin-4, are more susceptible to MV infection than proliferating keratinocytes. Based on these data, we propose a model to explain measles skin rash: migrating MV-infected lymphocytes initiate the infection of dermal skin-resident CD150+ immune cells. The infection is subsequently disseminated from the dermal papillae to nectin-4+ keratinocytes in the basal epidermis. Lateral spread of MV infection is observed in the superficial epidermis, most likely due to the higher level of nectin-4 expression on differentiated keratinocytes. Finally, MV-infected cells are cleared by infiltrating immune cells, causing hyperemia and edema, which give the appearance of morbilliform skin rash.


Assuntos
Derme/virologia , Epiderme/virologia , Queratinócitos/virologia , Linfócitos/virologia , Sarampo/virologia , Células Mieloides/virologia , Pele/virologia , Animais , Células Cultivadas , Derme/patologia , Epiderme/patologia , Humanos , Queratinócitos/patologia , Linfócitos/patologia , Macaca fascicularis , Sarampo/patologia , Vírus do Sarampo/isolamento & purificação , Células Mieloides/patologia , Pele/patologia
20.
J Sleep Res ; 31(2): e13496, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34617358

RESUMO

This protocol describes an innovative study to investigate the relationship between sleep, shift work and the immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; coronavirus disease 2019 [COVID-19]) vaccination. As the COVID-19 pandemic is a global crisis with devastating health, social and economic impacts, there is a pressing need for effective vaccination programmes. Previous influenza and hepatitis vaccination studies suggest that lack of sleep can negatively alter immune responsiveness, while circadian misalignment most likely may also play an important role in the immune response to vaccination. Our present study will be the first to address this question in actual shift workers and in relation to COVID-19 vaccination. We hypothesise that the occurrence of recent night shifts and diminished sleep will negatively alter the immune response to vaccination in shift workers compared to dayworkers. We aim to recruit 50 shift workers and 50 dayworkers. Participants will receive an mRNA-based vaccination, through the Dutch vaccination programme. To assess immune responsiveness, blood will be drawn at baseline (before first vaccination), 10 days after first vaccination, the day prior to the second vaccination; and 28 days, 6 and 12 months after the second vaccination. Actigraphy and daily sleep e-diaries will be implemented for 7 days around each vaccination to assess sleep. The Pittsburgh Sleep Quality Index will be used to monitor sleep in the long term. Optimising the efficacy of the COVID-19 vaccines is of outmost importance and results of this study could provide insights to develop sleep and circadian-based interventions to enhance vaccination immunity, and thereby improve global health.


Assuntos
COVID-19 , Jornada de Trabalho em Turnos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunidade , Pandemias/prevenção & controle , SARS-CoV-2 , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA