Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(W1): W432-W437, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37166962

RESUMO

Accurate and fast structure prediction of peptides of less 40 amino acids in aqueous solution has many biological applications, but their conformations are pH- and salt concentration-dependent. In this work, we present PEP-FOLD4 which goes one step beyond many machine-learning approaches, such as AlphaFold2, TrRosetta and RaptorX. Adding the Debye-Hueckel formalism for charged-charged side chain interactions to a Mie formalism for all intramolecular (backbone and side chain) interactions, PEP-FOLD4, based on a coarse-grained representation of the peptides, performs as well as machine-learning methods on well-structured peptides, but displays significant improvements for poly-charged peptides. PEP-FOLD4 is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD4. This server is free and there is no login requirement.


Assuntos
Peptídeos , Proteínas , Software , Concentração de Íons de Hidrogênio , Peptídeos/química , Conformação Proteica , Proteínas/química
2.
BMC Bioinformatics ; 25(1): 129, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532339

RESUMO

BACKGROUND: The RNA-Recognition motif (RRM) is a protein domain that binds single-stranded RNA (ssRNA) and is present in as much as 2% of the human genome. Despite this important role in biology, RRM-ssRNA interactions are very challenging to study on the structural level because of the remarkable flexibility of ssRNA. In the absence of atomic-level experimental data, the only method able to predict the 3D structure of protein-ssRNA complexes with any degree of accuracy is ssRNA'TTRACT, an ssRNA fragment-based docking approach using ATTRACT. However, since ATTRACT parameters are not ssRNA-specific and were determined in 2010, there is substantial opportunity for enhancement. RESULTS: Here we present HIPPO, a composite RRM-ssRNA scoring potential derived analytically from contact frequencies in near-native versus non-native docking models. HIPPO consists of a consensus of four distinct potentials, each extracted from a distinct reference pool of protein-trinucleotide docking decoys. To score a docking pose with one potential, for each pair of RNA-protein coarse-grained bead types, each contact is awarded or penalised according to the relative frequencies of this contact distance range among the correct and incorrect poses of the reference pool. Validated on a fragment-based docking benchmark of 57 experimentally solved RRM-ssRNA complexes, HIPPO achieved a threefold or higher enrichment for half of the fragments, versus only a quarter with the ATTRACT scoring function. In particular, HIPPO drastically improved the chance of very high enrichment (12-fold or higher), a scenario where the incremental modelling of entire ssRNA chains from fragments becomes viable. However, for the latter result, more research is needed to make it directly practically applicable. Regardless, our approach already improves upon the state of the art in RRM-ssRNA modelling and is in principle extendable to other types of protein-nucleic acid interactions.


Assuntos
Proteínas , RNA , Humanos , Ligação Proteica , Proteínas/química , RNA/química , Simulação de Acoplamento Molecular , Conformação Proteica
3.
Bioinformatics ; 38(16): 3911-3917, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35775902

RESUMO

MOTIVATION: Atomistic models of nucleic acids (NA) fragments can be used to model the 3D structures of specific protein-NA interactions and address the problem of great NA flexibility, especially in their single-stranded regions. One way to obtain relevant NA fragments is to extract them from existing 3D structures corresponding to the targeted context (e.g. specific 2D structures, protein families, sequences) and to learn from them. Several databases exist for specific NA 3D motifs, especially in RNA, but none can handle the variety of possible contexts. RESULTS: This article presents protNAff (protein-bound Nucleic Acids filters and fragments), a new pipeline for the conception of searchable databases on the 2D and 3D structures of protein-bound NA, the selection of context-specific (regions of) NA structures by combinations of filters, and the creation of context-specific NA fragment libraries. The strength of this pipeline is its modularity, allowing users to adapt it to many specific modeling problems. As examples, the pipeline is applied to the quantitative analysis of (i) the sequence-specificity of trinucleotide conformations, (ii) the conformational diversity of RNA at several levels of resolution, (iii) the effect of protein binding on RNA local conformations and (iv) the protein-binding propensity of RNA hairpin loops of various lengths. AVAILABILITY AND IMPLEMENTATION: The source code is freely available for download at URL https://github.com/isaureCdB/protNAff. The database and the trinucleotide fragment library are downloadable at URL https://zenodo.org/record/6483823#.YmbVhFxByV4. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Ácidos Nucleicos , Software , Proteínas/química , Conformação de Ácido Nucleico , RNA
4.
J Chem Inf Model ; 63(20): 6436-6450, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827517

RESUMO

Peptides have recently regained interest as therapeutic candidates, but their development remains confronted with several limitations including low bioavailability. Backbone head-to-tail cyclization, i.e., setting a covalent peptide bond linking the last amino acid with the first one, is one effective strategy of peptide-based drug design to stabilize the conformation of bioactive peptides while preserving peptide properties in terms of low toxicity, binding affinity, target selectivity, and preventing enzymatic degradation. Starting from an active peptide, it usually requires the design of a linker of a few amino acids to make it possible to cyclize the peptide, possibly preserving the conformation of the initial peptide and not affecting its activity. However, very little is known about the sequence-structure relationship requirements of designing linkers for peptide cyclization in a rational manner. Recently, we have shown that large-scale data-mining of available protein structures can lead to the precise identification of protein loop conformations, even from remote structural classes. Here, we transpose this approach to linkers, allowing head-to-tail peptide cyclization. First we show that given a linker sequence and the conformation of the linear peptide, it is possible to accurately predict the cyclized peptide conformation. Second, and more importantly, we show that it seems possible to elaborate on the information inferred from protein structures to propose effective candidate linker sequences constrained by length and amino acid composition, providing the first framework for the rational design of head-to-tail cyclization linkers. Finally, we illustrate this for two peptides using a limited set of amino-acids likely not to interfere with peptide function. For a linear peptide derived from Nrf2, the peptide cyclized starting from the experimental structure showed a 26-fold increase in the binding affinity. For urotensin II, a peptide already cyclized by a disulfide bond that exerts a broad array of biological activities, we were able, starting from models of the structure, to design a head-to-tail cyclized peptide, the first synthesized bicyclic 14-residue long urotensin II analogue, showing a retention of in vitro activity. Although preliminary, our results strongly suggest that such an approach has strong potential for cyclic peptide-based drug design.


Assuntos
Peptídeos Cíclicos , Peptídeos , Ciclização , Peptídeos/química , Peptídeos Cíclicos/química , Conformação Proteica , Aminoácidos
5.
Nucleic Acids Res ; 47(W1): W423-W428, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31114872

RESUMO

Loop regions in protein structures often have crucial roles, and they are much more variable in sequence and structure than other regions. In homology modeling, this leads to larger deviations from the homologous templates, and loop modeling of homology models remains an open problem. To address this issue, we have previously developed the DaReUS-Loop protocol, leading to significant improvement over existing methods. Here, a DaReUS-Loop web server is presented, providing an automated platform for modeling or remodeling loops in the context of homology models. This is the first web server accepting a protein with up to 20 loop regions, and modeling them all in parallel. It also provides a prediction confidence level that corresponds to the expected accuracy of the loops. DaReUS-Loop facilitates the analysis of the results through its interactive graphical interface and is freely available at http://bioserv.rpbs.univ-paris-diderot.fr/services/DaReUS-Loop/.


Assuntos
Modelos Moleculares , Software , Homologia Estrutural de Proteína , Internet
6.
Proteins ; 88(8): 1018-1028, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31785163

RESUMO

The ATTRACT protein-protein docking program has been employed to predict protein-protein complex structures in CAPRI rounds 38-45. For 11 out of 16 targets acceptable or better quality solutions have been submitted (~70%). It includes also several cases of peptide-protein docking and the successful prediction of the geometry of carbohydrate-protein interactions. The option of combining rigid body minimization and simultaneous optimization in collective degrees of freedom based on elastic network modes was employed and systematically evaluated. Application to a large benchmark set indicates a modest improvement in docking performance compared to rigid docking. Possible further improvements of the docking approach in particular at the scoring and the flexible refinement steps are discussed.


Assuntos
Carboidratos/química , Simulação de Acoplamento Molecular , Peptídeos/química , Proteínas/química , Software , Sequência de Aminoácidos , Benchmarking , Sítios de Ligação , Humanos , Ligantes , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteínas/metabolismo , Projetos de Pesquisa , Homologia Estrutural de Proteína , Termodinâmica
7.
Nucleic Acids Res ; 45(W1): W361-W364, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28460116

RESUMO

Peptide-protein interactions are ubiquitous in the cell and form an important part of the interactome. Computational docking methods can complement experimental characterization of these complexes, but current protocols are not applicable on the proteome scale. pepATTRACT is a novel docking protocol that is fully blind, i.e. it does not require any information about the binding site. In various stages of its development, pepATTRACT has participated in CAPRI, making successful predictions for five out of seven protein-peptide targets. Its performance is similar or better than state-of-the-art local docking protocols that do require binding site information. Here we present a novel web server that carries out the rigid-body stage of pepATTRACT. On the peptiDB benchmark, the web server generates a correct model in the top 50 in 34% of the cases. Compared to the full pepATTRACT protocol, this leads to some loss of performance, but the computation time is reduced from ∼18 h to ∼10 min. Combined with the fact that it is fully blind, this makes the web server well-suited for large-scale in silico protein-peptide docking experiments. The rigid-body pepATTRACT server is freely available at http://bioserv.rpbs.univ-paris-diderot.fr/services/pepATTRACT.


Assuntos
Simulação de Acoplamento Molecular/métodos , Peptídeos/química , Proteínas/química , Software , Ciclofilina A/química , Internet , Conformação Proteica
8.
Nucleic Acids Res ; 44(10): 4565-80, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27131381

RESUMO

Protein-RNA complexes are important for many biological processes. However, structural modeling of such complexes is hampered by the high flexibility of RNA. Particularly challenging is the docking of single-stranded RNA (ssRNA). We have developed a fragment-based approach to model the structure of ssRNA bound to a protein, based on only the protein structure, the RNA sequence and conserved contacts. The conformational diversity of each RNA fragment is sampled by an exhaustive library of trinucleotides extracted from all known experimental protein-RNA complexes. The method was applied to ssRNA with up to 12 nucleotides which bind to dimers of the RNA recognition motifs (RRMs), a highly abundant eukaryotic RNA-binding domain. The fragment based docking allows a precise de novo atomic modeling of protein-bound ssRNA chains. On a benchmark of seven experimental ssRNA-RRM complexes, near-native models (with a mean heavy-atom deviation of <3 Å from experiment) were generated for six out of seven bound RNA chains, and even more precise models (deviation < 2 Å) were obtained for five out of seven cases, a significant improvement compared to the state of the art. The method is not restricted to RRMs but was also successfully applied to Pumilio RNA binding proteins.


Assuntos
Modelos Moleculares , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA/química , RNA/metabolismo , Motivos de Aminoácidos , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Motivos de Ligação ao RNA
9.
Proteins ; 85(3): 391-398, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27785830

RESUMO

The ATTRACT coarse-grained docking approach in combination with various types of atomistic, flexible refinement methods has been applied to predict protein-protein and peptide-protein complexes in CAPRI rounds 28-36. For a large fraction of CAPRI targets (12 out of 18), at least one model of acceptable or better quality was generated, corresponding to a success rate of 67%. In particular, for several peptide-protein complexes excellent predictions were achieved. In several cases, a combination of template-based modeling and extensive molecular dynamics-based refinement yielded medium and even high quality solutions. In one particularly challenging case, the structure of an ubiquitylation enzyme bound to the nucleosome was correctly predicted as a set of acceptable quality solutions. Based on the experience with the CAPRI targets, new interface refinement approaches and methods for ab-initio peptide-protein docking have been developed. Failures and possible improvements of the docking method with respect to scoring and protein flexibility will also be discussed. Proteins 2017; 85:391-398. © 2016 Wiley Periodicals, Inc.


Assuntos
Biologia Computacional/métodos , Simulação de Acoplamento Molecular/métodos , Peptídeos/química , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Algoritmos , Sequência de Aminoácidos , Benchmarking , Sítios de Ligação , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas/estatística & dados numéricos , Projetos de Pesquisa , Software , Homologia Estrutural de Proteína
10.
J Comput Chem ; 38(17): 1538-1546, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28464276

RESUMO

Macromolecular docking methods can broadly be divided into geometric and atom-based methods. Geometric methods use fast algorithms that operate on simplified, grid-like molecular representations, while atom-based methods are more realistic and flexible, but far less efficient. Here, a hybrid approach of grid-based and atom-based docking is presented, combining precalculated grid potentials with neighbor lists for fast and accurate calculation of atom-based intermolecular energies and forces. The grid representation is compatible with simultaneous multibody docking and can tolerate considerable protein flexibility. When implemented in our docking method ATTRACT, grid-based docking was found to be ∼35x faster. With the OPLSX forcefield instead of the ATTRACT coarse-grained forcefield, the average speed improvement was >100x. Grid-based representations may allow atom-based docking methods to explore large conformational spaces with many degrees of freedom, such as multiple macromolecules including flexibility. This increases the domain of biological problems to which docking methods can be applied. © 2017 Wiley Periodicals, Inc.

11.
PLoS Comput Biol ; 12(1): e1004697, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26815409

RESUMO

Protein-RNA docking is hampered by the high flexibility of RNA, and particularly single-stranded RNA (ssRNA). Yet, ssRNA regions typically carry the specificity of protein recognition. The lack of methodology for modeling such regions limits the accuracy of current protein-RNA docking methods. We developed a fragment-based approach to model protein-bound ssRNA, based on the structure of the protein and the sequence of the RNA, without any prior knowledge of the RNA binding site or the RNA structure. The conformational diversity of each fragment is sampled by an exhaustive RNA fragment library that was created from all the existing experimental structures of protein-ssRNA complexes. A systematic and detailed analysis of fragment-based ssRNA docking was performed which constitutes a proof-of-principle for the fragment-based approach. The method was tested on two 8-homo-nucleotide ssRNA-protein complexes and was able to identify the binding site on the protein within 10 Å. Moreover, a structure of each bound ssRNA could be generated in close agreement with the crystal structure with a mean deviation of ~1.5 Å except for a terminal nucleotide. This is the first time a bound ssRNA could be modeled from sequence with high precision.


Assuntos
Sítios de Ligação , Biologia Computacional/métodos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA/química , RNA/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica
12.
J Ment Health ; 26(6): 489-495, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26754026

RESUMO

BACKGROUND: The Illness Management and Recovery scales (IMRS) can measure the progress of clients' illness self-management and recovery. Previous studies have examined the psychometric properties of the IMRS. AIMS: This study examined the reliability and validity of the Dutch version of the IMRS. METHOD: Clients (n = 111) and clinicians (n = 40) completed the client and clinician versions of the IMRS, respectively. The scales were administered again 2 weeks later to assess stability over time. Validity was assessed with the Utrecht Coping List (UCL), Dutch Empowerment Scale (DES), and Brief Symptom Inventory (BSI). RESULTS: The client and clinician versions of the IMRS had moderate internal reliability, with α = 0.69 and 0.71, respectively. The scales showed strong test-retest reliability, r = 0.79, for the client version and r = 0.86 for the clinician version. Correlations between client and clinician versions ranged from r = 0.37 to 0.69 for the total and subscales. We also found relationships in expected directions between the client IMRS and UCL, DES and BSI, which supports validity of the Dutch version of the IMRS. CONCLUSIONS: The Dutch version of the IMRS demonstrated good reliability and validity. The IMRS could be useful for Dutch-speaking programs interested in evaluating client progress on illness self-management and recovery.


Assuntos
Transtornos Mentais/diagnóstico , Transtornos Mentais/terapia , Psicometria/métodos , Gerenciamento Clínico , Feminino , Humanos , Masculino , Recuperação da Saúde Mental , Avaliação de Resultados em Cuidados de Saúde , Escalas de Graduação Psiquiátrica , Recuperação de Função Fisiológica , Reprodutibilidade dos Testes , Inquéritos e Questionários
13.
Biophys J ; 110(4): 785-97, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26846888

RESUMO

Protein-protein interactions carry out a large variety of essential cellular processes. Cryo-electron microscopy (cryo-EM) is a powerful technique for the modeling of protein-protein interactions at a wide range of resolutions, and recent developments have caused a revolution in the field. At low resolution, cryo-EM maps can drive integrative modeling of the interaction, assembling existing structures into the map. Other experimental techniques can provide information on the interface or on the contacts between the monomers in the complex. This inevitably raises the question regarding which type of data is best suited to drive integrative modeling approaches. Systematic comparison of the prediction accuracy and specificity of the different integrative modeling paradigms is unavailable to date. Here, we compare EM-driven, interface-driven, and contact-driven integrative modeling paradigms. Models were generated for the protein docking benchmark using the ATTRACT docking engine and evaluated using the CAPRI two-star criterion. At 20 Å resolution, EM-driven modeling achieved a success rate of 100%, outperforming the other paradigms even with perfect interface and contact information. Therefore, even very low resolution cryo-EM data is superior in predicting heterodimeric and heterotrimeric protein assemblies. Our study demonstrates that a force field is not necessary, cryo-EM data alone is sufficient to accurately guide the monomers into place. The resulting rigid models successfully identify regions of conformational change, opening up perspectives for targeted flexible remodeling.


Assuntos
Microscopia Crioeletrônica , Simulação de Acoplamento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Ligação Proteica , Conformação Proteica
14.
Biophys J ; 108(3): 462-5, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25650913

RESUMO

Protein-protein docking programs can give valuable insights into the structure of protein complexes in the absence of an experimental complex structure. Web interfaces can facilitate the use of docking programs by structural biologists. Here, we present an easy web interface for protein-protein docking with the ATTRACT program. While aimed at nonexpert users, the web interface still covers a considerable range of docking applications. The web interface supports systematic rigid-body protein docking with the ATTRACT coarse-grained force field, as well as various kinds of protein flexibility. The execution of a docking protocol takes up to a few hours on a standard desktop computer.


Assuntos
Internet , Mapeamento de Interação de Proteínas/métodos , Software , Interface Usuário-Computador , Animais , Quimiocina CCL2/metabolismo , Camundongos , Modelos Moleculares , Ligação Proteica , Proteínas Virais/metabolismo
15.
Proteins ; 83(2): 248-58, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25402278

RESUMO

Protein-protein interactions are abundant in the cell but to date structural data for a large number of complexes is lacking. Computational docking methods can complement experiments by providing structural models of complexes based on structures of the individual partners. A major caveat for docking success is accounting for protein flexibility. Especially, interface residues undergo significant conformational changes upon binding. This limits the performance of docking methods that keep partner structures rigid or allow limited flexibility. A new docking refinement approach, iATTRACT, has been developed which combines simultaneous full interface flexibility and rigid body optimizations during docking energy minimization. It employs an atomistic molecular mechanics force field for intermolecular interface interactions and a structure-based force field for intramolecular contributions. The approach was systematically evaluated on a large protein-protein docking benchmark, starting from an enriched decoy set of rigidly docked protein-protein complexes deviating by up to 15 Å from the native structure at the interface. Large improvements in sampling and slight but significant improvements in scoring/discrimination of near native docking solutions were observed. Complexes with initial deviations at the interface of up to 5.5 Å were refined to significantly better agreement with the native structure. Improvements in the fraction of native contacts were especially favorable, yielding increases of up to 70%.


Assuntos
Simulação de Acoplamento Molecular , Complexos Multiproteicos/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Quaternária de Proteína , Software
16.
Biotechnol Biofuels Bioprod ; 17(1): 84, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902807

RESUMO

BACKGROUND: The holistic characterization of different microbiomes in anaerobic digestion (AD) systems can contribute to a better understanding of these systems and provide starting points for bioengineering. The present study investigates the microbiome of 80 European full-scale AD systems. Operational, chemical and taxonomic data were thoroughly collected, analysed and correlated to identify the main drivers of AD processes. RESULTS: The present study describes chemical and operational parameters for a broad spectrum of different AD systems. With this data, Spearman correlation and differential abundance analyses were applied to narrow down the role of the individual microorganisms detected. The authors succeeded in further limiting the number of microorganisms in the core microbiome for a broad range of AD systems. Based on 16S rRNA gene amplicon sequencing, MBA03, Proteiniphilum, a member of the family Dethiobacteraceae, the genus Caldicoprobacter and the methanogen Methanosarcina were the most prevalent and abundant organisms identified in all digesters analysed. High ratios for Methanoculleus are often described for agricultural co-digesters. Therefore, it is remarkable that Methanosarcina was surprisingly high in several digesters reaching ratios up to 47.2%. The various statistical analyses revealed that the microorganisms grouped according to different patterns. A purely taxonomic correlation enabled a distinction between an acetoclastic cluster and a hydrogenotrophic one. However, in the multivariate analysis with chemical parameters, the main clusters corresponded to hydrolytic and acidogenic microorganisms, with SAOB bacteria being particularly important in the second group. Including operational parameters resulted in digester-type specific grouping of microbes. Those with separate acidification stood out among the many reactor types due to their unexpected behaviour. Despite maximizing the organic loading rate in the hydrolytic pretreatments, these stages turned into extremely robust methane production units. CONCLUSIONS: From 80 different AD systems, one of the most holistic data sets is provided. A very distinct formation of microbial clusters was discovered, depending on whether taxonomic, chemical or operational parameters were combined. The microorganisms in the individual clusters were strongly dependent on the respective reference parameters.

17.
J Clin Epidemiol ; 172: 111387, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729274

RESUMO

Clinical prediction models provide risks of health outcomes that can inform patients and support medical decisions. However, most models never make it to actual implementation in practice. A commonly heard reason for this lack of implementation is that prediction models are often not externally validated. While we generally encourage external validation, we argue that an external validation is often neither sufficient nor required as an essential step before implementation. As such, any available external validation should not be perceived as a license for model implementation. We clarify this argument by discussing 3 common misconceptions about external validation. We argue that there is not one type of recommended validation design, not always a necessity for external validation, and sometimes a need for multiple external validations. The insights from this paper can help readers to consider, design, interpret, and appreciate external validation studies.

18.
Proteins ; 81(12): 2167-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23996217

RESUMO

A coarse-grained (CG) protein model implemented in the ATTRACT protein-protein docking program has been employed to predict protein-protein complex structures in CAPRI Rounds 22-27. For six targets, acceptable or better quality solutions have been submitted corresponding to ~60% of all targets. For one target, promising results on the prediction of the hydration structure at the protein-protein interface have been achieved. New approaches for the rapid flexible refinement have been developed based on a combination of atomistic representation of the bonded geometry and a CG description of nonbonded interactions. Possible further improvements of the docking approach in particular at the scoring and the flexible refinement steps are discussed.


Assuntos
Simulação de Acoplamento Molecular , Mapeamento de Interação de Proteínas , Proteínas/química , Software , Algoritmos , Biologia Computacional , Cristalografia por Raios X , Genômica , Modelos Moleculares , Ligação Proteica , Conformação Proteica
19.
PLoS Comput Biol ; 8(11): e1002754, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133359

RESUMO

Ubiquitination relies on a subtle balance between selectivity and promiscuity achieved through specific interactions between ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). Here, we report how a single aspartic to glutamic acid substitution acts as a dynamic switch to tip the selectivity balance of human E2s for interaction toward E3 RING-finger domains. By combining molecular dynamic simulations, experimental yeast-two-hybrid screen of E2-E3 (RING) interactions and mutagenesis, we reveal how the dynamics of an internal salt-bridge network at the rim of the E2-E3 interaction surface controls the balance between an "open", binding competent, and a "closed", binding incompetent state. The molecular dynamic simulations shed light on the fine mechanism of this molecular switch and allowed us to identify its components, namely an aspartate/glutamate pair, a lysine acting as the central switch and a remote aspartate. Perturbations of single residues in this network, both inside and outside the interaction surface, are sufficient to switch the global E2 interaction selectivity as demonstrated experimentally. Taken together, our results indicate a new mechanism to control E2-E3 interaction selectivity at an atomic level, highlighting how minimal changes in amino acid side-chain affecting the dynamics of intramolecular salt-bridges can be crucial for protein-protein interactions. These findings indicate that the widely accepted sequence-structure-function paradigm should be extended to sequence-structure-dynamics-function relationship and open new possibilities for control and fine-tuning of protein interaction selectivity.


Assuntos
Ácido Aspártico/metabolismo , Ácido Glutâmico/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Biologia Computacional , Ácido Glutâmico/química , Ácido Glutâmico/genética , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes , Alinhamento de Sequência , Eletricidade Estática , Técnicas do Sistema de Duplo-Híbrido , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
20.
BMC Struct Biol ; 12: 29, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23153250

RESUMO

BACKGROUND: MTMDAT is a program designed to facilitate analysis of mass spectrometry data of proteins and biomolecular complexes that are probed structurally by limited proteolysis. This approach can provide information about stable fragments of multidomain proteins, yield tertiary and quaternary structure data, and help determine the origin of stability changes at the amino acid residue level. Here, we introduce a pipeline between MTMDAT and HADDOCK, that facilitates protein-protein complex structure probing in a high-throughput and highly automated fashion. RESULTS: A new feature of MTMDAT allows for the direct identification of residues that are involved in complex formation by comparing the mass spectra of bound and unbound proteins after proteolysis. If 3D structures of the unbound components are available, this data can be used to define restraints for data-driven docking to calculate a model of the complex. We describe here a new implementation of MTMDAT, which includes a pipeline to the data-driven docking program HADDOCK, thus streamlining the entire procedure. This addition, together with usability improvements in MTMDAT, enables high-throughput modeling of protein complexes from mass spectrometry data. The algorithm has been validated by using the protein-protein interaction between the ubiquitin-binding domain of proteasome component Rpn13 and ubiquitin. The resulting structural model, based on restraints extracted by MTMDAT from limited proteolysis and modeled by HADDOCK, was compared to the published NMR structure, which relied on twelve unambiguous intermolecular NOE interactions. The MTMDAT-HADDOCK structure was of similar quality to structures generated using only chemical shift perturbation data derived by NMR titration experiments. CONCLUSIONS: The new MTMDAT-HADDOCK pipeline enables direct high-throughput modeling of protein complexes from mass spectrometry data. MTMDAT-HADDOCK can be downloaded from http://www.ifm.liu.se/chemistry/molbiotech/maria_sunnerhagens_group/mtmdat/together with the manual and example files. The program is free for academic/non-commercial purposes.


Assuntos
Moléculas de Adesão Celular/metabolismo , Espectrometria de Massas/métodos , Simulação de Acoplamento Molecular/métodos , Software , Ubiquitina/metabolismo , Animais , Moléculas de Adesão Celular/química , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteólise , Ubiquitina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA