Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Genet ; 39(2): 159-61, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17200672

RESUMO

The Fanconi anemia and BRCA networks are considered interconnected, as BRCA2 gene defects have been discovered in individuals with Fanconi anemia subtype D1. Here we show that a defect in the BRCA2-interacting protein PALB2 is associated with Fanconi anemia in an individual with a new subtype. PALB2-deficient cells showed hypersensitivity to cross-linking agents and lacked chromatin-bound BRCA2; these defects were corrected upon ectopic expression of PALB2 or by spontaneous reversion.


Assuntos
Proteína BRCA2/fisiologia , Neoplasias da Mama/genética , Anemia de Fanconi/genética , Proteínas Nucleares/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Proteína do Grupo de Complementação N da Anemia de Fanconi , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Predisposição Genética para Doença , Humanos , Mutação , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética
2.
Nat Genet ; 37(9): 934-5, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16116423

RESUMO

The protein predicted to be defective in individuals with Fanconi anemia complementation group J (FA-J), FANCJ, is a missing component in the Fanconi anemia pathway of genome maintenance. Here we identify pathogenic mutations in eight individuals with FA-J in the gene encoding the DEAH-box DNA helicase BRIP1, also called FANCJ. This finding is compelling evidence that the Fanconi anemia pathway functions through a direct physical interaction with DNA.


Assuntos
Cromossomos Humanos Par 17 , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Anemia de Fanconi/genética , Mutação/genética , RNA Helicases/deficiência , RNA Helicases/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi , Teste de Complementação Genética , Humanos , Repetições de Microssatélites , Dados de Sequência Molecular , Deleção de Sequência
3.
Sci Rep ; 9(1): 768, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683899

RESUMO

Fanconi anemia (FA) is a cancer predisposition syndrome characterized by congenital abnormalities, bone marrow failure, and hypersensitivity to aldehydes and crosslinking agents. For FA patients, gene editing holds promise for therapeutic applications aimed at functionally restoring mutated genes in hematopoietic stem cells. However, intrinsic FA DNA repair defects may obstruct gene editing feasibility. Here, we report on the CRISPR/Cas9-mediated correction of a disruptive mutation in Fancf. Our experiments revealed that gene editing could effectively restore Fancf function via error-prone end joining resulting in a 27% increased survival in the presence of mitomycin C. In addition, templated gene correction could be achieved after double strand or single strand break formation. Although templated gene editing efficiencies were low (≤6%), FA corrected embryonic stem cells acquired a strong proliferative advantage over non-corrected cells, even without imposing genotoxic stress. Notably, Cas9 nickase activity resulted in mono-allelic gene editing and avoidance of undesired mutagenesis. In conclusion: DNA repair defects associated with FANCF deficiency do not prohibit CRISPR/Cas9 gene correction. Our data provide a solid basis for the application of pre-clinical models to further explore the potential of gene editing against FA, with the eventual aim to obtain therapeutic strategies against bone marrow failure.


Assuntos
Sistemas CRISPR-Cas/genética , Proteína do Grupo de Complementação F da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Anemia de Fanconi/terapia , Edição de Genes/métodos , Terapia Genética/métodos , Animais , Células Cultivadas , Reparo do DNA , Orelha , Fibroblastos , Camundongos , Células-Tronco Embrionárias Murinas
4.
Hum Mutat ; 29(1): 159-66, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17924555

RESUMO

Fanconi anemia (FA) is a recessively inherited syndrome with predisposition to bone marrow failure and malignancies. Hypersensitivity to cross-linking agents is a cellular feature used to confirm the diagnosis. The mode of inheritance is autosomal recessive (12 subtypes) as well as X-linked (one subtype). Most genetic subtypes have initially been defined as "complementation groups" by cell fusion studies. Here we report a comprehensive genetic subtyping approach for FA that is primarily based on mutation screening, supplemented by protein expression analysis and by functional assays to test for pathogenicity of unclassified variants. Of 80 FA cases analyzed, 73 (91%) were successfully subtyped. In total, 92 distinct mutations were detected, of which 56 were novel (40 in FANCA, eight in FANCC, two in FANCD1, three in FANCE, one in FANCF, and three in FANCG). All known complementation groups were represented, except D2, J, L, and M. Three patients could not be classified because proliferating cell cultures from the probands were lacking. In cell lines from the remaining four patients, immunoblotting was used to determine their capacity to monoubiquitinate FANCD2. In one case FANCD2 monoubiquitination was normal, indicating a defect downstream. In the remaining three cases monoubiquitination was not detectable, indicating a defect upstream. In the latter four patients, pathogenic mutations in a known FA gene may have been missed, or these patients might represent novel genetic subtypes. We conclude that direct mutation screening allows a molecular diagnosis of FA in the vast majority of patients, even in cases where growing cells from affected individuals are unavailable. Proliferating cell lines are required in a minority (<15%) of the patients, to allow testing for FANCD2 ubiquitination status and sequencing of FANCD2 using cDNA, to avoid interference from pseudogenes.


Assuntos
Análise Mutacional de DNA/métodos , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Anemia de Fanconi/diagnóstico , Teste de Complementação Genética , Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/classificação , Testes Genéticos , Humanos , Modelos Biológicos , Modelos Genéticos , Mutação
5.
Sci Rep ; 6: 25264, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27126562

RESUMO

Retinoblastoma is a rare childhood cancer initiated by RB1 mutation or MYCN amplification, while additional alterations may be required for tumor development. However, the view on single nucleotide variants is very limited. To better understand oncogenesis, we determined the genomic landscape of retinoblastoma. We performed exome sequencing of 71 retinoblastomas and matched blood DNA. Next, we determined the presence of single nucleotide variants, copy number alterations and viruses. Aside from RB1, recurrent gene mutations were very rare. Only a limited fraction of tumors showed BCOR (7/71, 10%) or CREBBP alterations (3/71, 4%). No evidence was found for the presence of viruses. Instead, specific somatic copy number alterations were more common, particularly in patients diagnosed at later age. Recurrent alterations of chromosomal arms often involved less than one copy, also in highly pure tumor samples, suggesting within-tumor heterogeneity. Our results show that retinoblastoma is among the least mutated cancers and signify the extreme sensitivity of the childhood retina for RB1 loss. We hypothesize that retinoblastomas arising later in retinal development benefit more from subclonal secondary alterations and therefore, these alterations are more selected for in these tumors. Targeted therapy based on these subclonal events might be insufficient for complete tumor control.


Assuntos
Dosagem de Genes , Mutação , Proteínas de Ligação a Retinoblastoma/genética , Retinoblastoma/patologia , Ubiquitina-Proteína Ligases/genética , Humanos , Análise de Sequência de DNA
6.
DNA Repair (Amst) ; 3(1): 77-84, 2004 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-14697762

RESUMO

The genome protection pathway that is defective in patients with Fanconi anemia (FA) is controlled by at least eight genes, including BRCA2. A key step in the pathway involves the monoubiquitylation of FANCD2, which critically depends on a multi-subunit nuclear 'core complex' of at least six FANC proteins (FANCA, -C, -E, -F, -G, and -L). Except for FANCL, which has WD40 repeats and a RING finger domain, no significant domain structure has so far been recognized in any of the core complex proteins. By using a homology search strategy comparing the human FANCG protein sequence with its ortholog sequences in Oryzias latipes (Japanese rice fish) and Danio rerio (zebrafish) we identified at least seven tetratricopeptide repeat motifs (TPRs) covering a major part of this protein. TPRs are degenerate 34-amino acid repeat motifs which function as scaffolds mediating protein-protein interactions, often found in multiprotein complexes. In four out of five TPR motifs tested (TPR1, -2, -5, and -6), targeted missense mutagenesis disrupting the motifs at the critical position 8 of each TPR caused complete or partial loss of FANCG function. Loss of function was evident from failure of the mutant proteins to complement the cellular FA phenotype in FA-G lymphoblasts, which was correlated with loss of binding to FANCA. Although the TPR4 mutant fully complemented the cells, it showed a reduced interaction with FANCA, suggesting that this TPR may also be of functional importance. The recognition of FANCG as a typical TPR protein predicts this protein to play a key role in the assembly and/or stabilization of the nuclear FA protein core complex.


Assuntos
Proteínas de Ligação a DNA/genética , Anemia de Fanconi/genética , Linfócitos/metabolismo , Mutação de Sentido Incorreto , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Núcleo Celular , Proteínas de Ligação a DNA/metabolismo , Proteína do Grupo de Complementação G da Anemia de Fanconi , Humanos , Linfócitos/patologia , Dados de Sequência Molecular , Mutagênese , Oryzias , Testes de Precipitina , Homologia de Sequência de Aminoácidos , Peixe-Zebra
7.
Anemia ; 2012: 865170, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701786

RESUMO

Fanconi anemia (FA) is a recessive DNA instability disorder associated with developmental abnormalities, bone marrow failure, and a predisposition to cancer. Based on their sensitivity to DNA cross-linking agents, FA cells have been assigned to 15 complementation groups, and the associated genes have been identified. Founder mutations have been found in different FA genes in several populations. The majority of Dutch FA patients belongs to complementation group FA-C. Here, we report 15 patients of Dutch ancestry and a large Canadian Manitoba Mennonite kindred carrying the FANCC c.67delG mutation. Genealogical investigation into the ancestors of the Dutch patients shows that these ancestors lived in four distinct areas in The Netherlands. We also show that the Dutch and Manitoba Mennonite FANCC c.67delG patients share the same haplotype surrounding this mutation, indicating a common founder.

8.
DNA Repair (Amst) ; 10(12): 1252-61, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-22036606

RESUMO

Fanconi anemia (FA) is a heritable disease characterized by bone marrow failure, congenital abnormalities, and cancer predisposition. The 15 identified FA genes operate in a molecular pathway to preserve genomic integrity. Within this pathway the FA core complex operates as an ubiquitin ligase that activates the complex of FANCD2 and FANCI to coordinate DNA repair. The FA core complex is formed by at least 12 proteins. However, only the FANCL subunit displays ubiquitin ligase activity. FANCA and FANCG are members of the FA core complex for which no other functions have been described than to participate in protein interactions. In this study we generated mice with combined null alleles for Fanca and Fancg to identify extended functions for these genes by characterizing the double mutant mice and cells. Double mutant a(-/-)/g(-/-) mice were born at near Mendelian frequencies without apparent developmental abnormalities. Histological analysis of a(-/-)/g(-/-) mice revealed a Leydig cell hyperplasia and frequent vacuolization of Sertoli cells in testes, while ovaries were depleted from developing follicles and displayed an interstitial cell hyperplasia. These gonadal aberrations were associated with a compromised fertility of a(-/-)/g(-/-) males and females. During the first year of life a(-/-)/g(-/-) did not develop malignancies or bone marrow failure. At the cellular level a(-/-)/g(-/-), Fanca(-/-), and Fancg(-/-) cells proved equally compromised in DNA crosslink and homology-directed repair. Overall the phenotype of a(-/-)/g(-/-) double knockout mice and cells appeared highly similar to the phenotype of Fanca or Fancg single knockouts. The lack of an augmented phenotype suggest that null mutations in Fanca or Fancg are fully epistatic, making additional important functions outside of the FA core complex highly unlikely.


Assuntos
Epistasia Genética/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação G da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Mutação/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Células da Medula Óssea/citologia , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Quebra Cromossômica/efeitos dos fármacos , Embrião de Mamíferos , Feminino , Fertilidade/genética , Fibroblastos/citologia , Fluorbenzenos/farmacologia , Testes Hematológicos , Humanos , Masculino , Camundongos , Ovário/metabolismo , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Testículo/metabolismo
9.
Genes Cells ; 7(3): 333-42, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11918676

RESUMO

BACKGROUND: Fanconi anaemia (FA) is an autosomal recessive chromosomal instability disorder. Six distinct FA disease genes have been identified, the products of which function in an integrated pathway that is thought to support a nuclear caretaker function. Comparison of FA gene characteristics in different species may help to unravel the molecular function of the FA pathway. RESULTS: We have cloned the murine homologue of the Fanconi anaemia complementation group G gene, FANCG/XRCC9. The murine Fancg protein shows an 83% similarity to the human protein sequence, and has a predicted molecular weight of 68.5 kDa. Expression of mouse Fancg in human FA-G lymphoblasts fully corrects their cross-linker hypersensitivity. At mRNA and protein levels we detected the co-expression of Fancg and Fanca in murine tissues. In addition, mouse Fancg and Fanca proteins co-purify by immunoprecipitation. Upon transfection into Fanca-deficient mouse embryonic fibroblasts EGFP-Fancg chimeric protein was detectable in the nucleus. CONCLUSIONS: We identified a murine cDNA, Fancg, which cross-complements the cellular defect of human FA-G cells and thus represents a true homologue of human FANCG. Spleen, thymus and testis showed the highest Fancg expression levels. Although Fancg and Fanca are able to form a complex, this interaction is not required for Fancg to accumulate in the nuclear compartment.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi , Proteína do Grupo de Complementação G da Anemia de Fanconi , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Camundongos , Dados de Sequência Molecular , Proteínas/metabolismo , RNA Mensageiro , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA