Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(4): 1974-1987, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215498

RESUMO

Here, we present the development and characterization of the novel PhenTAA macrocycle as well as a series of [Ni(R2PhenTAA)]n complexes featuring two sites for ligand-centered redox-activity. These differ in the substituent R (R = H, Me, or Ph) and overall charge of the complex n (n = -2, -1, 0, +1, or +2). Electrochemical and spectroscopic techniques (CV, UV/vis-SEC, X-band EPR) reveal that all redox events of the [Ni(R2PhenTAA)] complexes are ligand-based, with accessible ligand charges of -2, -1, 0, +1, and +2. The o-phenylenediamide (OPD) group functions as the electron donor, while the imine moieties act as electron acceptors. The flanking o-aminobenzaldimine groups delocalize spin density in both the oxidized and reduced ligand states. The reduced complexes have different stabilities depending on the substituent R. For R = H, dimerization occurs upon reduction, whereas for R = Me/Ph, the reduced imine groups are stabilized. This also gives electrochemical access to a [Ni(R2PhenTAA)]2- species. DFT and TD-DFT calculations corroborate these findings and further illustrate the unique donor-acceptor properties of the respective OPD and imine moieties. The novel [Ni(R2PhenTAA)] complexes exhibit up to five different ligand-based oxidation states and are electrochemically stable in a range from -2.4 to +1.8 V for the Me/Ph complexes (vs Fc/Fc+).

2.
J Am Chem Soc ; 145(2): 991-999, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36583709

RESUMO

Herein, we present a comprehensive study on the use of N-heterocyclic carbene (NHC)-ligated boryl radicals to enable C(sp3)-C(sp3) bond formation under visible-light irradiation via Halogen-Atom Transfer (XAT). The methodology relies on the use of an acridinium dye to generate the boron-centered radicals from the corresponding NHC-ligated boranes via single-electron transfer (SET) and deprotonation. These boryl radicals subsequently engage with alkyl halides in an XAT step, delivering the desired nucleophilic alkyl radicals. The present XAT strategy is very mild and accommodates a broad scope of alkyl halides, including medicinally relevant compounds and biologically active molecules. The key role of NHC-ligated boryl radicals in the operative reaction mechanism has been elucidated through a combination of experimental, spectroscopic, and computational studies. This methodology stands as a significant advancement in the chemistry of NHC-ligated boryl radicals, which had long been restricted to radical reductions, enabling C-C bond formation under visible-light photoredox conditions.


Assuntos
Halogênios , Metano , Transporte de Elétrons
3.
Chemistry ; 29(23): e202203900, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36645137

RESUMO

Coordination chemistry is a powerful method to synthesize supramolecular cages with distinct features that suit specific applications. This work demonstrates the synthesis of discrete, homochiral FeII 2 L3 cages via chirality-driven self-assembly. Specifically, the installation of chirality - at both the vertices and ligand backbones - allows the formation of discrete, homochiral FeII 2 L3 cages of different sizes via stereochemical control of the iron(II) centers. We observed that larger cages require multiple chiral centra (chiral ligands and vertices). In contrast, the formation of smaller cages is stereoselective with solely chiral ligands. The latter cages can also be formed from two chiral subcomponents, but only when they have matching chirality. Single-crystal X-ray diffraction of these smaller FeII 2 L3 cages revealed several non-covalent interactions as a driving force for narcissistic chiral self-sorting. This expected behavior was confirmed utilizing the shorter ligands in racemic form, yielding discrete, homochiral FeII 2 L3 cages formed in enantiomeric pairs.

4.
Chemistry ; 29(67): e202301901, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874010

RESUMO

Controlling the coordination sphere of heterogeneous single-metal-site catalysts is a powerful strategy for fine-tuning their catalytic properties but is fairly difficult to achieve. To address this problem, we immobilized supramolecular cages where the primary- and secondary coordination sphere are controlled by ligand design. The kinetics of these catalysts were studied in a model reaction, the hydrolysis of ammonia borane, over a temperature range using fast and precise online measurements generating high-precision Arrhenius plots. The results show how catalytic properties can be enhanced by placing a well-defined reaction pocket around the active site. Our fine-tuning yielded a catalyst with such performance that the reaction kinetics are diffusion-controlled rather than chemically controlled.

5.
Macromol Rapid Commun ; 44(21): e2300380, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595267

RESUMO

The thermal curing of industrial coatings (e.g., car painting and metal coil coatings) is accompanied by a substantial energy consumption due to the intrinsically high temperatures required during the curing process. Therefore, the development of new photochemical curing processes-preferably using visible light-is in high demand. This work describes new diazo-based cross-linkers that can be used to photocure acrylic coatings using blue light. This work demonstrates that the structure of the tethered diazo compounds influences the cross-linking efficiency, finding that side reactions are suppressed upon engineering greater molecular flexibility. Importantly, this work shows that these diazo compounds can be employed as either thermal or photochemical cross-linkers, exhibiting identical crosslinking performances. The performance of diazo-cross-linked coatings is evaluated to reveal excellent water resistance and demonstrably similar material properties to UV-cured acrylates. These studies pave the way for further usage of diazo-functionalized cross-linkers in the curing of paints and coatings.


Assuntos
Compostos Azo , Luz , Compostos Azo/química , Processos Fotoquímicos
6.
Angew Chem Int Ed Engl ; 62(48): e202313397, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37831966

RESUMO

Herein, we present the formation of transient radical ion pairs (RIPs) by single-electron transfer (SET) in phosphine-quinone systems and explore their potential for the activation of C-H bonds. PMes3 (Mes=2,4,6-Me3 C6 H2 ) reacts with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) with formation of the P-O bonded zwitterionic adduct Mes3 P-DDQ (1), while the reaction with the sterically more crowded PTip3 (Tip=2,4,6-iPr3 C6 H2 ) afforded C-H bond activation product Tip2 P(H)(2-[CMe2 (DDQ)]-4,6-iPr2 -C6 H2 ) (2). UV/Vis and EPR spectroscopic studies showed that the latter reaction proceeds via initial SET, forming RIP [PTip3 ]⋅+ [DDQ]⋅- , and subsequent homolytic C-H bond activation, which was supported by DFT calculations. The isolation of analogous products, Tip2 P(H)(2-[CMe2 {TCQ-B(C6 F5 )3 }]-4,6-iPr2 -C6 H2 ) (4, TCQ=tetrachloro-1,4-benzoquinone) and Tip2 P(H)(2-[CMe2 {oQtBu -B(C6 F5 )3 }]-4,6-iPr2 -C6 H2 ) (8, oQtBu =3,5-di-tert-butyl-1,2-benzoquinone), from reactions of PTip3 with Lewis-acid activated quinones, TCQ-B(C6 F5 )3 and oQtBu -B(C6 F5 )3 , respectively, further supports the proposed radical mechanism. As such, this study presents key mechanistic insights into the homolytic C-H bond activation by the synergistic action of radical ion pairs.

7.
Angew Chem Int Ed Engl ; 62(26): e202301329, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-36847781

RESUMO

The enantioselective hydrogenation of cyclic enamides has been achieved using an earth-abundant cobalt-bisphosphine catalyst. Using CoCl2 /(S,S)-Ph-BPE, several trisubstituted carbocyclic enamides were reduced with high activity and excellent enantioselectivity (up to 99 %) to the corresponding saturated amides. The methodology can be extended to the synthesis of chiral amines by base hydrolysis of the hydrogenation products. Preliminary mechanistic investigations reveal the presence of a high spin cobalt (II) species in the catalytic cycle. We propose that the hydrogenation of the carbon-carbon double bond proceeds via a sigma-bond-metathesis pathway.


Assuntos
Amidas , Cobalto , Amidas/química , Hidrogenação , Estereoisomerismo , Catálise , Carbono
8.
Inorg Chem ; 61(30): 11725-11733, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35857413

RESUMO

In this paper, we report the synthesis of a unique silicon(I)-based metalla-disilirane and report on its reactivity toward TMS-azide and benzophenone. Metal complexes containing disilylenes ((bis)silylenes with a Si-Si bond) are known, but direct ligation of the Si(I) centers to transition metals always generated dinuclear species. To overcome this problem, we targeted the formation of a mononuclear iron(0)-silicon(I)-based disilylene complex via templated synthesis, starting with ligation of two Si(II) centers to iron(II), followed by a two-step reduction. The DFT structure of the resulting η2-disilylene-iron complex reveals metal-to-silicon π-back donation and a delocalized three-center-two-electron (3c-2e) aromatic system. The Si(I)-Si(I) bond displays unusual but well-defined reactivity. With TMS-azide, both the initial azide adduct and the follow-up four-membered nitrene complex could be isolated. Reaction with benzophenone led to selective 1,4-addition into the Si-Si bond. This work reveals that selective reactions of Si(I)-Si(I) bonds are made possible by metal ligation.

9.
Org Biomol Chem ; 20(3): 575-578, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34935833

RESUMO

Phenol ester activated dipeptides that are reluctant to ring-close have been cyclised with the aid of sterically shielding metallo-porphyrins avoiding unwanted intermolecular reactions. The binding of ZnTPP to the dipyridine-functionalised activating phenolic ester was studied by NMR titrations and modelling. Staudinger-mediated cyclisations in the presence of ZnTPP increased the yield of the cyclic dipeptide from 16% to 40%.

10.
J Am Chem Soc ; 143(48): 20501-20512, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34802239

RESUMO

The metallo-radical activation of ortho-allylcarbonyl-aryl N-arylsulfonylhydrazones with the paramagnetic cobalt(II) porphyrin catalyst [CoII(TPP)] (TPP = tetraphenylporphyrin) provides an efficient and powerful method for the synthesis of novel 8-membered heterocyclic enol ethers. The synthetic protocol is versatile and practical and enables the synthesis of a wide range of unique 1H-2-benzoxocins in high yields. The catalytic cyclization reactions proceed with excellent chemoselectivities, have a high functional group tolerance, and provide several opportunities for the synthesis of new bioactive compounds. The reactions are shown to proceed via cobalt(III)-carbene radical intermediates, which are involved in intramolecular hydrogen transfer (HAT) from the allylic position to the carbene radical, followed by a near-barrierless radical rebound step in the coordination sphere of cobalt. The proposed mechanism is supported by experimental observations, density functional theory (DFT) calculations, and spin trapping experiments.

11.
Chemistry ; 27(68): 16978-16989, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34156122

RESUMO

Outer-sphere radical hydrogenation of olefins proceeds via stepwise hydrogen atom transfer (HAT) from transition metal hydride species to the substrate. Typical catalysts exhibit M-H bonds that are either too weak to efficiently activate H2 or too strong to reduce unactivated olefins. This contribution evaluates an alternative approach, that starts from a square-planar cobalt(II) hydride complex. Photoactivation results in Co-H bond homolysis. The three-coordinate cobalt(I) photoproduct binds H2 to give a dihydrogen complex, which is a strong hydrogen atom donor, enabling the stepwise hydrogenation of both styrenes and unactivated aliphatic olefins with H2 via HAT.

12.
Inorg Chem ; 60(5): 3274-3281, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33587616

RESUMO

The conventional method of assigning formal oxidation states (FOSs) to metals and ligands is an important tool for understanding and predicting the chemical reactivity, in particular, in catalysis research. For complexes containing redox-noninnocent ligands, the oxidation state of the ligand can be ambiguous (i.e., their spectroscopic oxidation state can differ from the FOS) and thus frustrates the assignment of the oxidation state of the metal. A quantitative correlation between the empirical metric data of redox-active ligands and their oxidation states using a metrical oxidation state (MOS) model has been developed for catecholate- and amidophenoxide-derived ligands by Brown. In the present work, we present a MOS model for 1,4-diazabutadiene (DADn) ligands. This model is based on a similar approach as reported by Brown, correlating the intra-ligand bond lengths of the DADn moiety in a quantitative manner with the MOS using geometrical information from X-ray structures in the Cambridge Crystallographic Data Center (CCDC) database. However, an accurate determination of the MOS of these ligands turned out to be dependent on the coordination mode of the DAD2- moiety, which can adopt both a planar κ2-N2-geometry and a η4-N2C2 π-coordination mode in (transition) metal complexes in its doubly reduced, dianionic enediamide oxidation state. A reliable MOS model was developed taking the intrinsic differences in intra-ligand bond distances between these coordination modes of the DAD2- ligand into account. Three different models were defined and tested using different geometric parameters (C═C → M distance, M-N-C angle, and M-N-C-C torsion angle) to describe the C═C backbone coordination with the metal in the η4-N2-C2 π-coordination mode of the DAD2- ligand. Statistical analysis revealed that the C═C → M distance best describes the η4-N2-C2 coordination mode using a cutoff value of 2.46 Å for π-coordination. The developed MOS model was used to validate the oxidation state assignment of elements not contained within the training set (Sr, Yb, and Ho), thus demonstrating the applicability of the MOS model to a wide range of complexes. Chromium complexes with complex electronic structures were also shown to be accurately described by MOS analysis. Furthermore, it is shown that a combination of MOS analysis and FOD calculations provides an inexpensive method to gain insight into the electronic structure of singlet spin state (S = 0) [M(trop2dad)] transition-metal complexes showing (potential) singlet biradical character.

13.
Nat Commun ; 15(1): 4028, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740738

RESUMO

In recent years, there has been a growing demand for drug design approaches that incorporate a higher number of sp3-hybridized carbons, necessitating the development of innovative cross-coupling strategies to reliably introduce aliphatic fragments. Here, we present a powerful approach for the light-mediated B-alkyl Suzuki-Miyaura cross-coupling between alkyl boranes and aryl bromides. Alkyl boranes were easily generated via hydroboration from readily available alkenes, exhibiting excellent regioselectivity and enabling the selective transfer of a diverse range of primary alkyl fragments onto the arene ring under photocatalytic conditions. This methodology eliminates the need for expensive catalytic systems and sensitive organometallic compounds, operating efficiently at room temperature within just 30 min. We further demonstrate the translation of the present protocol to continuous-flow conditions, enhancing scalability, safety, and overall efficiency of the method. This versatile approach offers significant potential for accelerating drug discovery efforts by enabling the introduction of complex aliphatic fragments in a straightforward and reliable manner.

14.
ACS Appl Polym Mater ; 6(6): 3517-3522, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38544970

RESUMO

Polyurethane coatings have strong material properties due to the hydrogen bonding inherent to the urethane groups. However, installing this urethane moiety usually requires curing through difficult-to-handle isocyanates. In this work, we show the development of a polyurethane-based crosslinker that can be used to formulate a one-component polyurethane coating with material properties similar to those of isocyanate-based polyurethane coatings. To achieve this, we used diazirine functionalities that generate carbenes upon heating, which react with alcohol functionalities in a polyol to generate a crosslinked network with a high storage modulus.

15.
Chem Sci ; 14(42): 11840-11849, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37920352

RESUMO

In this contribution, we describe a post-assembly modification approach to selectively coordinate transition metals in Pd12L24 cuboctahedra. The herein reported approach involves the preparation of Pd12L24 nanospheres with protonated nitrogen donor ligands that are covalently linked at the interior. The so obtained Pd12(LH+)24 nanospheres are shown to be suitable for coordinative post-modification after deprotection by deprotonation. Selective formation of tetra-coordinated MB in Pd12MB6L24, tri-coordinated MB in Pd12MB8L24 nanospheres and two-coordinated MB in Pd12MB12L24 nanospheres is achieved as a result of different nitrogen donor ligands. A combination of pulsed EPR spectroscopy (DEER) to measure Cu-Cu distances in the different spheres, NMR studies and computational investigations, support the presence of the complexes at precise locations of the Pd12MB6L24 nanosphere. The general post-assembly modification methodology can be extended using other transition metal precursors or supramolecular systems and can guide precise formation and investigation of novel transition metal-complex containing nanospheres with well-defined composition.

16.
ChemSusChem ; 16(18): e202300841, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37470203

RESUMO

Immobilizing molecular catalysts on electrodes is vital for electrochemical applications. However, creating robust electrode-catalyst interactions while maintaining good catalytic performance and rapid electron transfer is challenging. Here, without introducing any foreign elements, we show a bottom-up synthetic approach of constructing the conjugated C-C bond between the commercial Vulcan carbon electrode and an organometallic catalyst. Characterization results from FTIR, XPS, aberration-corrected TEM and EPR confirmed the successful and uniform heterogenization of the complex. The synthesized Vulcan-LN4 -Co catalyst is highly active and selective in the oxygen reduction reaction in neutral media, showing an 80 % hydrogen peroxide selectivity and a 0.72 V (vs. RHE) onset potential which significantly outperformed the homogenous counterpart. Based on single-crystal XRD and NMR data, we built a model for density functional theory calculations which showed a nearly optimal binding energy for the *OOH intermediate. Our results show that the direct conjugated C-C bonding is an effective approach for heterogenizing molecular catalysts on carbon, opening new opportunities for employing molecular catalysts in electrochemical applications.

17.
ACS Catal ; 13(13): 8467-8476, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37441234

RESUMO

The NiOOH electrode is commonly used in electrochemical alcohol oxidations. Yet understanding the reaction mechanism is far from trivial. In many cases, the difficulty lies in the decoupling of the overlapping influence of chemical and electrochemical factors that not only govern the reaction pathway but also the crystal structure of the in situ formed oxyhydroxide. Here, we use a different approach to understand this system: we start with synthesizing pure forms of the two oxyhydroxides, ß-NiOOH and γ-NiOOH. Then, using the oxidative dehydrogenation of three typical alcohols as the model reactions, we examine the reactivity and selectivity of each oxyhydroxide. While solvent has a clear effect on the reaction rate of ß-NiOOH, the observed selectivity was found to be unaffected and remained over 95% for the dehydrogenation of both primary and secondary alcohols to aldehydes and ketones, respectively. Yet, high concentration of OH- in aqueous solvent promoted the preferential conversion of benzyl alcohol to benzoic acid. Thus, the formation of carboxylic compounds in the electrochemical oxidation without alkaline electrolyte is more likely to follow the direct electrochemical oxidation pathway. Overoxidation of NiOOH from the ß- to γ-phase will affect the selectivity but not the reactivity with a sustained >95% conversion. The mechanistic examinations comprising kinetic isotope effects, Hammett analysis, and spin trapping studies reveal that benzyl alcohol is oxidatively dehydrogenated to benzaldehyde via two consecutive hydrogen atom transfer steps. This work offers the unique oxidative and catalytic properties of NiOOH in alcohol oxidation reactions, shedding light on the mechanistic understanding of the electrochemical alcohol conversion using NiOOH-based electrodes.

18.
Dalton Trans ; 51(8): 3019-3026, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35079760

RESUMO

Homogeneous ruthenium catalysed methanol dehydrogenation could become a key reaction for hydrogen production in liquid fuel cells. In order to improve existing catalytic systems, mechanistic insight is paramount in directing future studies. Herein, we describe what computational mechanistic research has taught us so far about ruthenium catalysed dehydrogenation reactions. In general, two mechanistic pathways can be operative in these reactions: a metal-centered or a metal-ligand cooperative (Noyori-Morris type) minimum energy reaction pathway (MERP). Discerning between these mechanisms on the basis of computational studies has proven to be highly input dependent, and to circumvent pitfalls it is important to consider several factors, such as solvent effects, metal-ligand cooperativity, alternative geometries, and complex electronic structures of metal centres. This Frontiers article summarizes the reported computational research performed on ruthenium catalyzed dehydrogenation reactions performed in the past decade, and serves as a guide for future research.

19.
Macromolecules ; 55(21): 9690-9696, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36397938

RESUMO

Polyureas have widespread applications due to their unique material properties. Because of the toxicity of isocyanates, sustainable isocyanate-free routes to prepare polyureas are a field of active research. Current routes to isocyanate-free polyureas focus on constructing the urea moiety in the final polymerizing step. In this study we present a new isocyanate-free method to produce polyureas by Ru-catalyzed carbene insertion into the N-H bonds of urea itself in combination with a series of bis-diazo compounds as carbene precursors. The mechanism was investigated by kinetics and DFT studies, revealing the rate-determining step to be nucleophilic attack on a Ru-carbene moiety by urea. This study paves the way to use transition-metal-catalyzed reactions in alternative routes to polyureas.

20.
JACS Au ; 1(8): 1101-1115, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34467352

RESUMO

Advances in (spectroscopic) characterization of the unusual electronic structures of open-shell cobalt complexes bearing redox-active ligands, combined with detailed mapping of their reactivity, have uncovered several new catalytic radical-type protocols that make efficient use of the synergistic properties of redox-active ligands, redox-active substrates, and the metal to which they coordinate. In this perspective, we discuss the tools available to study, induce, and control catalytic radical-type reactions with redox-active ligands and/or substrates, contemplating recent developments in the field, including some noteworthy tools, methods, and reactions developed in our own group. The main topics covered are (i) tools to characterize redox-active ligands; (ii) novel synthetic applications of catalytic reactions that make use of redox-active carbene and nitrene substrates at open-shell cobalt-porphyrins; (iii) development of catalytic reactions that take advantage of purely ligand- and substrate-based redox processes, coupled to cobalt-centered spin-changing events in a synergistic manner; and (iv) utilization of redox-active ligands to influence the spin state of the metal. Redox-active ligands have emerged as useful tools to generate and control reactive metal-coordinated radicals, which give access to new synthetic methodologies and intricate (electronic) structures, some of which are yet to be exposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA