Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 85(7): 4730-4739, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130858

RESUMO

We have identified a successful family of simple P-stereogenic N-phosphine-phosphite ligands for the Rh-catalyzed asymmetric hydrogenation of olefins. These catalysts show excellent enantiocontrol for α-dehydroamino acid derivatives and α-enamides (ee's up to >99%) and promising results for the more challenging ß-analogues (ee's up to 80%). The usefulness of these catalytic systems was further demonstrated with the synthesis of several valuable precursors for pharmacologically active compounds, with ee's at least as high as the best ones reported previously (up to >99%).

2.
ACS Catal ; 13(5): 3020-3035, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36910869

RESUMO

The Ir-MaxPHOX-type catalysts demonstrated high catalytic performance in the hydrogenation of a wide range of nonchelating olefins with different geometries, substitution patterns, and degrees of functionalization. These air-stable and readily available catalysts have been successfully applied in the asymmetric hydrogenation of di-, tri-, and tetrasubstituted olefins (ee's up to 99%). The combination of theoretical calculations and deuterium labeling experiments led to the uncovering of the factors responsible for the enantioselectivity observed in the reaction, allowing the rationalization of the most suitable substrates for these Ir-catalysts.

3.
Org Lett ; 21(3): 807-811, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30648389

RESUMO

Air-stable and readily available Ir-catalyst precursors modified with MaxPHOX-type ligands have been successfully applied in the challenging asymmetric hydrogenation of tetrasubstituted olefins under mild reaction conditions. Gratifyingly, these catalyst precursors are able to efficiently hydrogenate not only a range of indene derivatives (ee's up to 96%) but also 1,2-dihydronapthalene derivatives and acyclic olefins (ee's up to 99%), which both constitute the most challenging substrates for this transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA