RESUMO
Drug-resistant bacteria are outpacing traditional antibiotic discovery efforts. Here, we computationally screened 444,054 previously reported putative small protein families from 1,773 human metagenomes for antimicrobial properties, identifying 323 candidates encoded in small open reading frames (smORFs). To test our computational predictions, 78 peptides were synthesized and screened for antimicrobial activity in vitro, with 70.5% displaying antimicrobial activity. As these compounds were different compared with previously reported antimicrobial peptides, we termed them smORF-encoded peptides (SEPs). SEPs killed bacteria by targeting their membrane, synergizing with each other, and modulating gut commensals, indicating a potential role in reconfiguring microbiome communities in addition to counteracting pathogens. The lead candidates were anti-infective in both murine skin abscess and deep thigh infection models. Notably, prevotellin-2 from Prevotella copri presented activity comparable to the commonly used antibiotic polymyxin B. Our report supports the existence of hundreds of antimicrobials in the human microbiome amenable to clinical translation.
Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Microbiota , Humanos , Animais , Camundongos , Antibacterianos/farmacologia , Microbiota/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Metagenoma , Feminino , Fases de Leitura Aberta , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Prevotella/efeitos dos fármacosRESUMO
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.
Assuntos
Peptídeos Antimicrobianos , Aprendizado de Máquina , Microbiota , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/genética , Humanos , Animais , Antibacterianos/farmacologia , Camundongos , Metagenoma , Bactérias/efeitos dos fármacos , Bactérias/genética , Microbioma Gastrointestinal/efeitos dos fármacosRESUMO
The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic "phagebodies." We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications.
Assuntos
Bacteriófago T3/genética , Infecções por Escherichia coli/terapia , Escherichia coli/virologia , Terapia por Fagos/métodos , Dermatopatias Bacterianas/terapia , Proteínas da Cauda Viral/genética , Animais , Farmacorresistência Bacteriana , Especificidade de Hospedeiro , Camundongos , Mutagênese Sítio-DirigidaRESUMO
Human genomic diversity has been shaped by both ancient and ongoing challenges from viruses. The current coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating impact on population health. However, genetic diversity and evolutionary forces impacting host genes related to SARS-CoV-2 infection are not well understood. We investigated global patterns of genetic variation and signatures of natural selection at host genes relevant to SARS-CoV-2 infection (angiotensin converting enzyme 2 [ACE2], transmembrane protease serine 2 [TMPRSS2], dipeptidyl peptidase 4 [DPP4], and lymphocyte antigen 6 complex locus E [LY6E]). We analyzed data from 2,012 ethnically diverse Africans and 15,977 individuals of European and African ancestry with electronic health records and integrated with global data from the 1000 Genomes Project. At ACE2, we identified 41 nonsynonymous variants that were rare in most populations, several of which impact protein function. However, three nonsynonymous variants (rs138390800, rs147311723, and rs145437639) were common among central African hunter-gatherers from Cameroon (minor allele frequency 0.083 to 0.164) and are on haplotypes that exhibit signatures of positive selection. We identify signatures of selection impacting variation at regulatory regions influencing ACE2 expression in multiple African populations. At TMPRSS2, we identified 13 amino acid changes that are adaptive and specific to the human lineage compared with the chimpanzee genome. Genetic variants that are targets of natural selection are associated with clinical phenotypes common in patients with COVID-19. Our study provides insights into global variation at host genes related to SARS-CoV-2 infection, which have been shaped by natural selection in some populations, possibly due to prior viral infections.
Assuntos
COVID-19 , África , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Variação Genética , Humanos , Fenótipo , SARS-CoV-2/genética , Seleção GenéticaRESUMO
Peptides have a plethora of activities in biological systems that can potentially be exploited biotechnologically. Several peptides are used clinically, as well as in industry and agriculture. The increase in available 'omics data has recently provided a large opportunity for mining novel enzymes, biosynthetic gene clusters, and molecules. While these data primarily consist of DNA sequences, other types of data provide important complementary information. Due to their size, the approaches proven successful at discovering novel proteins of canonical size cannot be naïvely applied to the discovery of peptides. Peptides can be encoded directly in the genome as short open reading frames (smORFs), or they can be derived from larger proteins by proteolysis. Both of these peptide classes pose challenges as simple methods for their prediction result in large numbers of false positives. Similarly, functional annotation of larger proteins, traditionally based on sequence similarity to infer orthology and then transferring functions between characterized proteins and uncharacterized ones, cannot be applied for short sequences. The use of these techniques is much more limited and alternative approaches based on machine learning are used instead. Here, we review the limitations of traditional methods as well as the alternative methods that have recently been developed for discovering novel bioactive peptides with a focus on prokaryotic genomes and metagenomes.
Assuntos
Biologia Computacional , Peptídeos , Proteômica , Metagenoma , Células Procarióticas/química , Biologia Computacional/métodosRESUMO
Peptide surfactants (PEPS) are studied to capture and retain rare earth elements (REEs) at air-water interfaces to enable REE separations. Peptide sequences, designed to selectively bind REEs, depend crucially on the position of ligands within their binding loop domain. These ligands form a coordination sphere that wraps and retains the cation. We study variants of lanthanide binding tags (LBTs) designed to complex strongly with Tb3+. The peptide LBT5- (with net charge -5) is known to bind Tb3+ and adsorb with more REE cations than peptide molecules, suggesting that undesired non-specific coulombic interactions occur. Rheological characterization of interfaces of LBT5- and Tb3+ solutions reveal the formation of an interfacial gel. To probe whether this gelation reflects chelation among intact adsorbed LBT5-:Tb3+ complexes or destruction of the binding loop, we study a variant, LBT3-, designed to form net neutral LBT3-:Tb3+ complexes. Solutions of LBT3- and Tb3+ form purely viscous layers in the presence of excess Tb3+, indicating that each peptide binds a single REE in an intact coordination sphere. We introduce the variant RR-LBT3- with net charge -3 and anionic ligands outside of the coordination sphere. We find that such exposed ligands promote interfacial gelation. Thus, a nuanced requirement for interfacial selectivity of PEPS is proposed: that anionic ligands outside of the coordination sphere must be avoided to prevent the non-selective recruitment of REE cations. This view is supported by simulation, including interfacial molecular dynamics simulations, and interfacial metadynamics simulations of the free energy landscape of the binding loop conformational space.
RESUMO
Despite significant progress in antibiotic discovery, millions of lives are lost annually to infections. Surprisingly, the failure of antimicrobial treatments to effectively eliminate pathogens frequently cannot be attributed to genetically-encoded antibiotic resistance. This review aims to shed light on the fundamental mechanisms contributing to clinical scenarios where antimicrobial therapies are ineffective (i.e., antibiotic failure), emphasizing critical factors impacting this under-recognized issue. Explored aspects include biofilm formation and sepsis, as well as the underlying microbiome. Therapeutic strategies beyond antibiotics, are examined to address the dimensions and resolution of antibiotic failure, actively contributing to this persistent but escalating crisis. We discuss the clinical relevance of antibiotic failure beyond resistance, limited availability of therapies, potential of new antibiotics to be ineffective, and the urgent need for novel anti-infectives or host-directed therapies directly addressing antibiotic failure. Particularly noteworthy is multidrug adaptive resistance in biofilms that represent 65 % of infections, due to the lack of approved therapies. Sepsis, responsible for 19.7 % of all deaths (as well as severe COVID-19 deaths), is a further manifestation of this issue, since antibiotics are the primary frontline therapy, and yet 23 % of patients succumb to this condition.
Assuntos
Antibacterianos , Sepse , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Biofilmes , Sepse/tratamento farmacológicoRESUMO
COVID-19 has led to over 3.47 million deaths worldwide and continues to devastate primarily middle- and low-income countries. High-frequency testing has been proposed as a potential solution to prevent outbreaks. However, current tests are not sufficiently low-cost, rapid, or scalable to enable broad COVID-19 testing. Here, we describe LEAD (Low-cost Electrochemical Advanced Diagnostic), a diagnostic test that detects severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within 6.5 min and costs $1.50 per unit to produce using easily accessible and commercially available materials. LEAD is highly sensitive toward SARS-CoV-2 spike protein (limit of detection = 229 fgâ mL-1) and displays an excellent performance profile using clinical saliva (100.0% sensitivity, 100.0% specificity, and 100.0% accuracy) and nasopharyngeal/oropharyngeal (88.7% sensitivity, 86.0% specificity, and 87.4% accuracy) samples. No cross-reactivity was detected with other coronavirus or influenza strains. Importantly, LEAD also successfully diagnosed the highly contagious SARS-CoV-2 B.1.1.7 UK variant. The device presents high reproducibility under all conditions tested and preserves its original sensitivity for 5 d when stored at 4 °C in phosphate-buffered saline. Our low-cost and do-it-yourself technology opens new avenues to facilitate high-frequency testing and access to much-needed diagnostic tests in resource-limited settings and low-income communities.
Assuntos
Técnicas Biossensoriais , Teste para COVID-19 , COVID-19 , Grafite/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/diagnóstico , COVID-19/metabolismo , Eletrodos , Humanos , Sensibilidade e EspecificidadeRESUMO
The emergence of drug-resistant bacteria poses a significant challenge to modern medicine. In response, Artificial Intelligence (AI) and Machine Learning (ML) algorithms have emerged as powerful tools for combating antimicrobial resistance (AMR). This review aims to explore the role of AI/ML in AMR management, with a focus on identifying pathogens, understanding resistance patterns, predicting treatment outcomes, and discovering new antibiotic agents. Recent advancements in AI/ML have enabled the efficient analysis of large datasets, facilitating the reliable prediction of AMR trends and treatment responses with minimal human intervention. ML algorithms can analyze genomic data to identify genetic markers associated with antibiotic resistance, enabling the development of targeted treatment strategies. Additionally, AI/ML techniques show promise in optimizing drug administration and developing alternatives to traditional antibiotics. By analyzing patient data and clinical outcomes, these technologies can assist healthcare providers in diagnosing infections, evaluating their severity, and selecting appropriate antimicrobial therapies. While integration of AI/ML in clinical settings is still in its infancy, advancements in data quality and algorithm development suggest that widespread clinical adoption is forthcoming. In conclusion, AI/ML holds significant promise for improving AMR management and treatment outcome.
Assuntos
Antibacterianos , Inteligência Artificial , Aprendizado de Máquina , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Algoritmos , Farmacorresistência Bacteriana/genéticaRESUMO
Clostridioides difficile infection (CDI) is a life-threatening disease caused by the Gram-positive, opportunistic intestinal pathogen C. difficile. Despite the availability of antimicrobial drugs to treat CDI, such as vancomycin, metronidazole, and fidaxomicin, recurrence of infection remains a significant clinical challenge. The use of live commensal microorganisms, or probiotics, is one of the most investigated non-antibiotic therapeutic options to balance gastrointestinal (GI) microbiota and subsequently tackle dysbiosis. In this review, we will discuss major commensal probiotic strains that have the potential to prevent and/or treat CDI and its recurrence, reassess the efficacy of probiotics supplementation as a CDI intervention, delve into lessons learned from probiotic modulation of the immune system, explore avenues like genome-scale metabolic network reconstructions, genome sequencing, and multi-omics to identify novel strains and understand their functionality, and discuss the current regulatory framework, challenges, and future directions.
Assuntos
Clostridioides difficile , Infecções por Clostridium , Probióticos , Humanos , Antibacterianos/uso terapêutico , Clostridioides difficile/genética , Clostridioides , Vancomicina/uso terapêutico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/prevenção & controle , Probióticos/uso terapêuticoRESUMO
Genetically modified microorganisms (GMMs) can enable a wide range of important applications including environmental sensing and responsive engineered living materials. However, containment of GMMs to prevent environmental escape and satisfy regulatory requirements is a bottleneck for real-world use. While current biochemical strategies restrict unwanted growth of GMMs in the environment, there is a need for deployable physical containment technologies to achieve redundant, multi-layered and robust containment. We developed a hydrogel-based encapsulation system that incorporates a biocompatible multilayer tough shell and an alginate-based core. This deployable physical containment strategy (DEPCOS) allows no detectable GMM escape, bacteria to be protected against environmental insults including antibiotics and low pH, controllable lifespan and easy retrieval of genomically recoded bacteria. To highlight the versatility of DEPCOS, we demonstrated that robustly encapsulated cells can execute useful functions, including performing cell-cell communication with other encapsulated bacteria and sensing heavy metals in water samples from the Charles River.
Assuntos
Bactérias/efeitos dos fármacos , Hidrogéis/farmacologia , Alginatos/química , Antibacterianos/farmacologia , Bactérias/genética , Materiais Biocompatíveis , Bioengenharia , DNA Bacteriano/química , DNA Bacteriano/genética , Monitoramento Ambiental , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Heme/química , Metais Pesados/química , Organismos Geneticamente Modificados , Percepção de Quorum , Rios , Poluentes da Água/químicaRESUMO
Novel antibiotics are urgently needed to combat multidrug-resistant pathogens. Venoms represent previously untapped sources of novel drugs. Here we repurposed mastoparan-L, the toxic active principle derived from the venom of the wasp Vespula lewisii, into synthetic antimicrobials. We engineered within its N terminus a motif conserved among natural peptides with potent immunomodulatory and antimicrobial activities. The resulting peptide, mast-MO, adopted an α-helical structure as determined by NMR, exhibited increased antibacterial properties comparable to standard-of-care antibiotics both in vitro and in vivo, and potentiated the activity of different classes of antibiotics. Mechanism-of-action studies revealed that mast-MO targets bacteria by rapidly permeabilizing their outer membrane. In animal models, the peptide displayed direct antimicrobial activity, led to enhanced ability to attract leukocytes to the infection site, and was able to control inflammation. Permutation studies depleted the remaining toxicity of mast-MO toward human cells, yielding derivatives with antiinfective activity in animals. We demonstrate a rational design strategy for repurposing venoms into promising antimicrobials.
Assuntos
Bacteriemia/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/química , Venenos de Vespas/química , Animais , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros/uso terapêutico , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Venenos de Vespas/uso terapêutico , Venenos de Vespas/toxicidadeRESUMO
The gut microbiome has a significant impact on health and disease and can actively contribute to obesity, diabetes, inflammatory bowel disease, cardiovascular disease, and neurological disorders. We do not yet have the necessary tools to fine-tune the microbial communities that constitute the microbiome, though such tools could unlock extensive benefits to human health. Here, we provide an overview of the current state of technological tools that may be used for microbiome engineering. These tools can enable investigators to define the parameters of a healthy microbiome and to determine how gut bacteria may contribute to the etiology of a variety of diseases. These tools may also allow us to explore the exciting prospect of developing targeted therapies and personalized treatments for microbiome-linked diseases.
Assuntos
Microbioma Gastrointestinal , Engenharia Metabólica , Animais , Epigênese Genética/genética , Epigênese Genética/imunologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , HumanosRESUMO
Peptides are potential therapeutic alternatives against global diseases, such as antimicrobial-resistant infections and cancer. Venoms are a rich source of bioactive peptides that have evolved over time to act on specific targets of the prey. Peptides are one of the main components responsible for the biological activity and toxicity of venoms. South American organisms such as scorpions, snakes, and spiders are important producers of a myriad of peptides with different biological activities. In this review, we report the main venom-derived peptide families produced from South American organisms and their corresponding activities and biological targets.
Assuntos
Neoplasias , Peçonhas , Animais , Peçonhas/farmacologia , Peçonhas/uso terapêutico , Escorpiões/química , Peptídeos/farmacologia , Peptídeos/química , Neoplasias/tratamento farmacológico , Resistência Microbiana a MedicamentosRESUMO
Although antimicrobial resistance is an increasingly significant public health concern, there have only been two new classes of antibiotics approved for human use since the 1960s. Understanding the mechanisms of action of antibiotics is critical for novel antibiotic discovery, but novel approaches are needed that do not exclusively rely on experiments. Molecular dynamics simulation is a computational tool that uses simple models of the atoms in a system to discover nanoscale insights into the dynamic relationship between mechanism and biological function. Such insights can lay the framework for elucidating the mechanism of action and optimizing antibiotic templates. Antimicrobial peptides represent a promising solution to escalating antimicrobial resistance, given their lesser tendency to induce resistance than that of small-molecule antibiotics. Simulations of these agents have already revealed how they interact with bacterial membranes and the underlying physiochemical features directing their structure and function. In this minireview, we discuss how traditional molecular dynamics simulation works and its role and potential for the development of new antibiotic candidates with an emphasis on antimicrobial peptides.
Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Descoberta de Drogas , Simulação de Dinâmica Molecular , Proteínas Citotóxicas Formadoras de Poros/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Descoberta de Drogas/métodos , Humanos , Conformação Molecular , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Relação Estrutura-AtividadeRESUMO
Indwelling and implanted medical devices are subject to contamination by microbial pathogens during surgery, insertion or injection, and ongoing use, often resulting in severe nosocomial infections. Antimicrobial peptides (AMPs) offer a promising alternative to conventional antibiotics to reduce the incidence of such infections, as they exhibit broad-spectrum antimicrobial activity against Gram-negative and Gram-positive bacteria, microbial biofilms, fungi, and viruses. In this review-perspective, we first provide an overview of the progress made in this field over the past decade with an emphasis on the local release of AMPs from implant surfaces and immobilization strategies for incorporating these agents into a wide range of medical device materials. We then provide a regulatory science perspective addressing the characterization and testing of AMP coatings based on the type of immobilization strategy used with a focus on the US market regulatory niche. Our goal is to help narrow the gulf between academic studies and preclinical testing, as well as to support a future literature base in order to develop the regulatory science of antimicrobial coatings.
Assuntos
Peptídeos Catiônicos Antimicrobianos , Biofilmes , Equipamentos e Provisões , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Equipamentos e Provisões/microbiologia , Fungos/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Legislação de Dispositivos Médicos/normas , Vírus/efeitos dos fármacosRESUMO
VmCT1, a linear helical antimicrobial peptide isolated from the venom of the scorpion Vaejovis mexicanus, displays broad spectrum antimicrobial activity against bacteria, fungi, and protozoa. Analogs derived from this peptide containing single Arg-substitutions have been shown to increase antimicrobial and antiparasitic activities against Trypanossoma cruzi. Here, we tested these analogs against malaria, an infectious disease caused by Plasmodium protozoa, and assessed their antitumoral properties. Specifically, we tested VmCT1 synthetic variants [Arg]3 -VmCT1-NH2 , [Arg]7 -VmCT1-NH2 , and [Arg]11 -VmCT1-NH2 , against Plasmodium gallinaceum sporozoites and MCF-7 mammary cancer cells. Our screen identified peptides [Arg]3 -VmCT1-NH2 and [Arg]7 -VmCT1-NH2 as potent antiplasmodial agents (IC50 of 0.57 and 0.51 µmol L-1 , respectively), whereas [Arg]11 -VmCT1-NH2 did not show activity against P. gallinaceum sporozoites. Interestingly, all peptides presented activity against MCF-7 and displayed lower cytotoxicity toward healthy cells. We demonstrate that increasing the net positive charge of VmCT1, through arginine substitutions, modulates the biological properties of this peptide family yielding novel antiplasmodial and antitumoral molecules.
Assuntos
Antimaláricos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Malária/tratamento farmacológico , Plasmodium gallinaceum/efeitos dos fármacos , Venenos de Escorpião/farmacologia , Animais , Antimaláricos/química , Antimaláricos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Parasitária , Venenos de Escorpião/química , Venenos de Escorpião/isolamento & purificação , EscorpiõesRESUMO
Early plants began colonizing earth about 450 million years ago. During the process of coevolution, their metabolic cellular pathways produced a myriad of natural chemicals, many of which remain uncharacterized biologically. Popular preparations containing some of these molecules have been used medicinally for thousands of years. In Brazilian folk medicine, plant extracts from the bamboo plant Guadua paniculata Munro have been used for the treatment of infections and pain. However, the chemical basis of these therapeutic effects has not yet been identified. Here, we performed protein biochemistry and downstream pharmacological assays to determine the mechanisms underlying the anti-inflammatory and antinociceptive effects of an aqueous extract of the G. paniculata rhizome, which we termed AqGP. The anti-inflammatory and antinociceptive effects of AqGP were assessed in mice. We identified and purified a protein (AgGP), with an amino acid sequence similar to that of thaumatins (~20 kDa), capable of repressing inflammation through downregulation of neutrophil recruitment and of decreasing hyperalgesia in mice. In conclusion, we have identified the molecule and the molecular mechanism responsible for the anti-inflammatory and antinociceptive properties of a plant commonly used in Brazilian folk medicine.
Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Bambusa/química , Extratos Vegetais/uso terapêutico , Sequência de Aminoácidos , Analgésicos/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Células MCF-7 , Masculino , Camundongos , Células NIH 3T3 , Extratos Vegetais/administração & dosagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Molecular interactions are essential for regulation of cellular processes from the formation of multi-protein complexes to the allosteric activation of enzymes. Identifying the essential residues and molecular features that regulate such interactions is paramount for understanding the biochemical process in question, allowing for suppression of a reaction through drug interventions or optimization of a chemical process using bioengineered molecules. In order to identify important residues and information pathways within molecular complexes, the dynamical network analysis method was developed and has since been broadly applied in the literature. However, in the dawn of exascale computing, this method is frequently limited to relatively small biomolecular systems. In this work, we provide an evolution of the method, application, and interface. All data processing and analysis are conducted through Jupyter notebooks, providing automatic detection of important solvent and ion residues, an optimized and parallel generalized correlation implementation that is linear with respect to the number of nodes in the system, and subsequent community clustering, calculation of betweenness of contacts, and determination of optimal paths. Using the popular visualization program visual molecular dynamics (VMD), high-quality renderings of the networks over the biomolecular structures can be produced. Our new implementation was employed to investigate three different systems, with up to 2.5M atoms, namely, the OMP-decarboxylase, the leucyl-tRNA synthetase complexed with its cognate tRNA and adenylate, and respiratory complex I in a membrane environment. Our enhanced and updated protocol provides the community with an intuitive and interactive interface, which can be easily applied to large macromolecular complexes.