RESUMO
Measures of traits are the basis of functional biological diversity. Numerous works consider mean species-level measures of traits while ignoring individual variance within species. However, there is a large amount of variation within species and it is increasingly apparent that it is important to consider trait variation not only between species, but also within species. Mammals are an interesting group for investigating trait-based approaches because they play diverse and important ecological functions (e.g., pollination, seed dispersal, predation, grazing) that are correlated with functional traits. Here we compile a data set comprising morphological and life history information of 279 mammal species from 39,850 individuals of 388 populations ranging from -5.83 to -29.75 decimal degrees of latitude and -34.82 to -56.73 decimal degrees of longitude in the Atlantic forest of South America. We present trait information from 16,840 individuals of 181 species of non-volant mammals (Rodentia, Didelphimorphia, Carnivora, Primates, Cingulata, Artiodactyla, Pilosa, Lagomorpha, Perissodactyla) and from 23,010 individuals of 98 species of volant mammals (Chiroptera). The traits reported include body mass, age, sex, reproductive stage, as well as the geographic coordinates of sampling for all taxa. Moreover, we gathered information on forearm length for bats and body length and tail length for rodents and marsupials. No copyright restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications. We also request that researchers and teachers inform us of how they are using the data.
RESUMO
Anticoagulant rodenticides (ARs) are currently the most common method to control rats in cities, but these compounds also cause morbidity and mortality in non-target wildlife. Little attention has been focused on AR exposure among mesopredators despite their ecological role as scavengers and prey for larger carnivores, thus serving as an important bridge in the biomagnification of rodenticides in food webs. In this study, we sampled liver tissue from raccoons (Procyon lotor; n = 37), skunks (Mephitis mephitis; n = 15), and Virginia opossums (Didelphis virginiana; n = 45) euthanized by pest professionals and brown rats (Rattus norvegicus; n = 101) trapped in alleys in Chicago, USA to evaluate how often these species are exposed to ARs. We tested whether mesopredators had a higher prevalence of ARs and to more AR compounds compared to rats and calculated biomagnification factors (mean concentration in mesopredators/rats) as indicators of biomagnification. Of 93 sampled mesopredators, 100 % were exposed to at least one AR compound, mainly brodifacoum (≥80 %), and 79 % were exposed to multiple AR compounds. We also documented teal stomach contents consistent with the consumption of rat bait and altricial young tested positive to the same AR as their mother, suggesting mammary transfer. Of the 101 rats, 74 % tested positive to at least one AR compound and 32 % were exposed to multiple AR compounds. All mesopredator species had biomagnification factors exceeding 1.00 for brodifacoum (6.57-29.07) and bromadiolone (1.08-4.31). Our results suggest widespread exposure to ARs among urban mesopredators and biomagnification of ARs in mesopredators compared to rats. Policies that limit AR availability to non-target species, such as restricting the sale and use of ARs to licensed professionals in indoor settings, education on alternatives, and more emphasis on waste management may reduce health risks for urban wildlife and people in cities around the world.
Assuntos
Anticoagulantes , Rodenticidas , Animais , Rodenticidas/metabolismo , Chicago , Exposição Ambiental/estatística & dados numéricos , Ratos , Monitoramento Ambiental , Poluentes Ambientais/metabolismoRESUMO
The current environmental changes stressing the Earth's biological systems urgently require study from an integrated perspective to reveal unexpected, cross-scale interactions, particularly between microbes and macroscale phenomena. Such interactions are the basis of a mechanistic understanding of the important connections between deforestation and emerging infectious disease, feedback between ecosystem disturbance and the gut microbiome, and the cross-scale effects of environmental pollutants. These kinds of questions can be answered with existing techniques and data, but a concerted effort is necessary to better coordinate studies and data sets from different disciplines to fully leverage their potential.
Assuntos
Ecossistema , Microbioma Gastrointestinal , Animais , BiologiaRESUMO
Understanding variation of traits within and among species through time and across space is central to many questions in biology. Many resources assemble species-level trait data, but the data and metadata underlying those trait measurements are often not reported. Here, we introduce FuTRES (Functional Trait Resource for Environmental Studies; pronounced few-tress), an online datastore and community resource for individual-level trait reporting that utilizes a semantic framework. FuTRES already stores millions of trait measurements for paleobiological, zooarchaeological, and modern specimens, with a current focus on mammals. We compare dynamically derived extant mammal species' body size measurements in FuTRES with summary values from other compilations, highlighting potential issues with simply reporting a single mean estimate. We then show that individual-level data improve estimates of body mass-including uncertainty-for zooarchaeological specimens. FuTRES facilitates trait data integration and discoverability, accelerating new research agendas, especially scaling from intra- to interspecific trait variability.
RESUMO
The Atlantic Forest of eastern Paraguay has experienced extensive recent deforestation. Less than one-third of the region is forested, and the remaining forest largely consists of isolated remnants with potentially disrupted connectivity for forest fauna. We used a graph theory approach to identify those forest remnants that are important in maintaining landscape structural connectivity for mammals in this fragmented forest. We quantified structural connectivity for forest remnants over the period 2000-2019 at three levels: the entire network of Atlantic Forest remnants in eastern Paraguay; at 10 smaller, nested spatial scales (40-10,000 m) encompassing a range of potential mammalian dispersal abilities; and at the level of individual remnants. We used 10 graph theory metrics to assess aspects of network complexity, dispersal-route efficiency, and individual remnant importance in supporting structural connectivity. We identified forest remnants that serve as important structural connectivity roles as stepping stones, hubs, or articulation points and that should be prioritized for connectivity conservation. Structural connectivity was constrained for organisms incapable of travelling at least 9-12 km (farthest distances between nearest-neighboring forest remnants depending on whether smaller remnants were included or not) and was particularly limited for area-sensitive forest-specialist mammals. With the increased forest loss and fragmentation that is occurring, the connectivity of this system will likely be further compromised, but most of the remnants that we identified as playing important roles for structural connectivity were outside of the country's proposed "green corridor," indicating additional areas where conservation action can be directed.
RESUMO
Species that live in degraded habitats often show signs of physiological stress. Glucocorticoid hormones (e.g., corticosterone and cortisol) are often assessed as a proxy of the extent of physiological stress an animal has experienced. Our goal was to quantify glucocorticoids in free-ranging small mammals in fragments of Interior Atlantic Forest. We extracted glucocorticoids from fur samples of 106 small mammals (rodent genera Akodon and Oligoryzomys, and marsupial genera Gracilinanus and Marmosa) from six forest fragments (2-1200 ha) in the Reserva Natural Tapytá, Caazapá Department, Paraguay. To our knowledge, this is the first publication of corticosterone and cortisol levels for three of the four sampled genera (Akodon, Oligoryzomys, and Marmosa) in this forest system. We discovered three notable results. First, as predicted, glucocorticoid levels were higher in individuals living withing small forest fragments. Second, animals captured live using restraint trapping methods (Sherman traps) had higher glucocorticoid levels than those animals captured using kill traps (Victor traps), suggesting that hair glucocorticoid measures can reflect acute stress levels in addition to long-term glucocorticoid incorporation. These acute levels are likely due to urinary steroids diffusing into the hair shaft. This finding raises a concern about the use of certain trapping techniques in association with fur hormone analysis. Finally, as expected, we also detected genus-specific differences in glucocorticoid levels, as well as cortisol/corticosterone ratios.
Assuntos
Pelo Animal/química , Corticosterona/análise , Florestas , Glucocorticoides/análise , Hidrocortisona/análise , Marsupiais/classificação , Roedores/classificação , Animais , Biodiversidade , Feminino , Masculino , Paraguai , Estresse FisiológicoRESUMO
BACKGROUND: The speckled-pelage brush-furred rats (Lophuromys flavopunctatus group) have been difficult to define given conflicting genetic, morphological, and distributional records that combine to obscure meaningful accounts of its taxonomic diversity and evolution. In this study, we inferred the systematics, phylogeography, and evolutionary history of the L. flavopunctatus group using maximum likelihood and Bayesian phylogenetic inference, divergence times, historical biogeographic reconstruction, and morphometric discriminant tests. We compiled comprehensive datasets of three loci (two mitochondrial [mtDNA] and one nuclear) and two morphometric datasets (linear and geometric) from across the known range of the genus Lophuromys. RESULTS: The mtDNA phylogeny supported the division of the genus Lophuromys into three primary groups with nearly equidistant pairwise differentiation: one group corresponding to the subgenus Kivumys (Kivumys group) and two groups corresponding to the subgenus Lophuromys (L. sikapusi group and L. flavopunctatus group). The L. flavopunctatus group comprised the speckled-pelage brush-furred Lophuromys endemic to Ethiopia (Ethiopian L. flavopunctatus members [ETHFLAVO]) and the non-Ethiopian ones (non-Ethiopian L. flavopunctatus members [NONETHFLAVO]) in deeply nested relationships. There were distinctly geographically structured mtDNA clades among the NONETHFLAVO, which were incongruous with the nuclear tree where several clades were unresolved. The morphometric datasets did not systematically assign samples to meaningful taxonomic units or agree with the mtDNA clades. The divergence dating and ancestral range reconstructions showed the NONETHFLAVO colonized the current ranges over two independent dispersal events out of Ethiopia in the early Pleistocene. CONCLUSION: The phylogenetic associations and divergence times of the L. flavopunctatus group support the hypothesis that paleoclimatic impacts and ecosystem refugia during the Pleistocene impacted the evolutionary radiation of these rodents. The overlap in craniodental variation between distinct mtDNA clades among the NONETHFLAVO suggests unraveling underlying ecomorphological drivers is key to reconciling taxonomically informative morphological characters. The genus Lophuromys requires a taxonomic reassessment based on extensive genomic evidence to elucidate the patterns and impacts of genetic isolation at clade contact zones.
Assuntos
DNA Mitocondrial , Ecossistema , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Etiópia , Filogenia , RatosRESUMO
Loss of habitat, specifically deforestation, is a major driver of biodiversity loss. Species-area relationship (SAR) models traditionally have been used for estimating species richness, species loss as a function of habitat loss, and extrapolation of richness for given areas. Sampling-species relationships (SSRs) are interrelated yet separate drivers for species richness estimates. Traditionally, however, SAR and SSR models have been used independently and not incorporated into a single approach. We developed and compared predictive models that incorporate sampling effort species-area relationships (SESARS) along the entire Atlantic Forest of South America, and then applied the best-fit model to estimate richness in forest remnants of Interior Atlantic Forest of eastern Paraguay. This framework was applied to non-volant small mammal assemblages that reflect different tolerances to forest loss and fragmentation. In order to account for differences in functionality we estimated small mammal richness of 1) the entire non-volant small mammal assemblage, including introduced species; 2) the native species forest assemblage; and 3) the forest-specialist assemblage, with the latter two assemblages being subsets of the entire assemblage. Finally, we geospatially modeled species richness for each of the three assemblages throughout eastern Paraguay to identify remnants with high species richness. We found that multiple regression power-law interaction-term models that only included area and the interactions of area and sampling as predictors, worked best for predicting species richness for the entire assemblage and the native species forest assemblage, while several traditional SAR models (logistic, power, exponential, and ratio) best described forest-specialist richness. Species richness was significantly different between assemblages. We identified obvious remnants with high species richness in eastern Paraguay, and these remnants often were geographically isolated. We also found relatively high predicted species richness (in relation to the entire range of predicted richness values) in several geographically-isolated, medium-size forest remnants that likely have not been considered as possible priority areas for conservation. These findings highlight the importance of using an empirical dataset, created using sources representing diverse sampling efforts, to develop robust predictive models. This approach is particularly important in geographic locations where field sampling is limited yet the geographic area is experiencing rapid and dramatic land cover changes. When combined, area and sampling are powerful modeling predictors for questions of biogeography, ecology, and conservation, especially when addressing habitat loss and fragmentation.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Mamíferos/fisiologia , Animais , Florestas , Sistemas de Informação Geográfica , Espécies Introduzidas , Modelos Teóricos , Paraguai , Dinâmica PopulacionalRESUMO
Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.