Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Brain ; 146(12): 5182-5197, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015929

RESUMO

STXBP1-related disorders are among the most common genetic epilepsies and neurodevelopmental disorders. However, the longitudinal epilepsy course and developmental end points, have not yet been described in detail, which is a critical prerequisite for clinical trial readiness. Here, we assessed 1281 cumulative patient-years of seizure and developmental histories in 162 individuals with STXBP1-related disorders and established a natural history framework. STXBP1-related disorders are characterized by a dynamic pattern of seizures in the first year of life and high variability in neurodevelopmental trajectories in early childhood. Epilepsy onset differed across seizure types, with 90% cumulative onset for infantile spasms by 6 months and focal-onset seizures by 27 months of life. Epilepsy histories diverged between variant subgroups in the first 2 years of life, when individuals with protein-truncating variants and deletions in STXBP1 (n = 39) were more likely to have infantile spasms between 5 and 6 months followed by seizure remission, while individuals with missense variants (n = 30) had an increased risk for focal seizures and ongoing seizures after the first year. Developmental outcomes were mapped using milestone acquisition data in addition to standardized assessments including the Gross Motor Function Measure-66 Item Set and the Grasping and Visual-Motor Integration subsets of the Peabody Developmental Motor Scales. Quantification of end points revealed high variability during the first 5 years of life, with emerging stratification between clinical subgroups. An earlier epilepsy onset was associated with lower developmental abilities, most prominently when assessing gross motor development and expressive communication. We found that individuals with neonatal seizures or early infantile seizures followed by seizure offset by 12 months of life had more predictable seizure trajectories in early to late childhood compared to individuals with more severe seizure presentations, including individuals with refractory epilepsy throughout the first year. Characterization of anti-seizure medication response revealed age-dependent response over time, with phenobarbital, levetiracetam, topiramate and adrenocorticotropic hormone effective in reducing seizures in the first year of life, while clobazam and the ketogenic diet were effective in long-term seizure management. Virtual clinical trials using seizure frequency as the primary outcome resulted in wide range of trial success probabilities across the age span, with the highest probability in early childhood between 1 year and 3.5 years. In summary, we delineated epilepsy and developmental trajectories in STXBP1-related disorders using standardized measures, providing a foundation to interpret future therapeutic strategies and inform rational trial design.


Assuntos
Epilepsia , Espasmos Infantis , Recém-Nascido , Criança , Pré-Escolar , Humanos , Lactente , Anticonvulsivantes/uso terapêutico , Espasmos Infantis/genética , Espasmos Infantis/tratamento farmacológico , Topiramato/uso terapêutico , Convulsões/induzido quimicamente , Proteínas Munc18/genética
2.
Epilepsia ; 64(6): 1444-1457, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37039049

RESUMO

New onset refractory status epilepticus (NORSE), including its subtype with a preceding febrile illness known as febrile infection-related epilepsy syndrome (FIRES), is one of the most severe forms of status epilepticus. The exact causes of NORSE are currently unknown, and there is so far no disease-specific therapy. Identifying the underlying pathophysiology and discovering specific biomarkers, whether immunologic, infectious, genetic, or other, may help physicians in the management of patients with NORSE. A broad spectrum of biomarkers has been proposed for status epilepticus patients, some of which were evaluated for patients with NORSE. Nonetheless, none has been validated, due to significant variabilities in study cohorts, collected biospecimens, applied analytical methods, and defined outcome endpoints, and to small sample sizes. The NORSE Institute established an open NORSE/FIRES biorepository for health-related data and biological samples allowing the collection of biospecimens worldwide, promoting multicenter research and sharing of data and specimens. Here, we suggest standard operating procedures for biospecimen collection and biobanking in this rare condition. We also propose criteria for the appropriate use of previously collected biospecimens. We predict that the widespread use of standardized procedures will reduce heterogeneity, facilitate the future identification of validated biomarkers for NORSE, and provide a better understanding of the pathophysiology and best clinical management for these patients.


Assuntos
Epilepsia Resistente a Medicamentos , Encefalite , Estado Epiléptico , Humanos , Bancos de Espécimes Biológicos , Estado Epiléptico/tratamento farmacológico , Convulsões/complicações , Epilepsia Resistente a Medicamentos/terapia , Encefalite/complicações , Biomarcadores
3.
Curr Opin Clin Nutr Metab Care ; 22(4): 264-268, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31033577

RESUMO

PURPOSE OF REVIEW: The ketogenic diet, a high-fat, low-carbohydrate therapy, has become an established treatment for pediatric epilepsy since 1921. There has recently been an increase in important studies on the ketogenic diet, and this review will highlight the most recent in order to provide a synthesis of where this field stands today. RECENT FINDINGS: Clinical studies continue to support the use of ketogenic diets in epilepsy, with more recent trials supporting its use in adults. Clinical recommendations published in 2018 based on a decade of practice and research, guide implementation and management of the ketogenic diet in epilepsy. One of the most rapidly growing 'indications' includes the role of ketogenic diets in status epilepticus. An exciting new potential mechanism for how the ketogenic diet exerts its antiseizure effects is through changing the composition of the gut microbiome. Lastly, ketogenic diets are being applied to a range of neurological conditions from autism to Alzheimer's disease. SUMMARY: The ketogenic diet is a versatile therapy, with growing clinical evidence and guidelines, widely used for the treatment of epilepsy. New indications include status epilepticus and neurological conditions other than epilepsy.


Assuntos
Dieta Cetogênica , Epilepsia/dietoterapia , Adulto , Doenças do Sistema Nervoso Central/dietoterapia , Criança , Cuidados Críticos , Microbioma Gastrointestinal/fisiologia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
bioRxiv ; 2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36798176

RESUMO

In human and nonhuman primates, the amygdala paralaminar nucleus (PL) contains immature neurons. To explore the PL’s potential for cellular growth during development, we compared PL cells in 1) infant and adolescent macaques (control, maternally-reared), and in 2) infant macaques that experienced separation from their mother in the first month of life. In maternally-reared animals, the adolescent PL had fewer immature neurons, more mature neurons, and larger immature soma volumes compared to infant PL. There were also fewer total neurons (immature plus mature) in adolescent versus infant PL, suggesting that some neurons move out of the PL by adolescence. Maternal separation did not change mean immature or mature neuron counts in infant PL. However, across all infant animals, immature neuron soma volume was strongly correlated with mature neuron counts. tbr-1 mRNA, a transcript required for glutamatergic neuron maturation, is significantly reduced in the maternally-separated infant PL (DeCampo et al, 2017), and was also positively correlated with mature neuron counts in infant PL. We conclude that immature neurons gradually mature by adolescence, and that the stress of maternal separation may shift this trajectory, as revealed by correlations between tbr1mRNA and mature neuron numbers across animals.

5.
J Child Neurol ; 38(10-12): 581-589, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37624689

RESUMO

BACKGROUND / OBJECTIVE: Seizures are a complication for pediatric patients requiring extracorporeal membrane oxygenation (ECMO). There are no standardized guidelines regarding continuous electroencephalography (EEG) monitoring to detect seizures in these patients, and the impact of protocolized monitoring has not been evaluated. Here we examined the effects of continuous EEG protocol implementation in our pediatric ECMO population. METHODS: Retrospective chart reviews were conducted on 57 patients who underwent extracorporeal membrane oxygenation and concurrent continuous EEG out of 165 patients supported on extracorporeal membrane oxygenation. Timing of continuous EEG initiation and seizures detected by continuous EEG was determined for 5 years prior to and 15 months after protocol implementation. RESULTS: Protocol implementation was associated with increased ECMO-supported patients who were concurrently monitored by continuous EEG. Time from ECMO cannulation to continuous EEG initiation was shorter (median 7 hours after versus 16.2 hours before; P < .001). Patients who had ongoing seizures at the start of continuous EEG recording decreased from 64% preprotocol to 0% postprotocol (P < .001), and there was an associated earlier time to break in status epilepticus postprotocol. Seizures were detected past 48 hours after cannulation in 50% of patients in the postprotocol group. CONCLUSIONS: Protocol implementation resulted in earlier continuous EEG initiation and more EEGs initiated before seizure onset with evidence of altered seizure dynamics. Although current recommendations suggest that continuous EEG duration of 24-48 hours results in seizure detection for >90% of critically ill adults, longer monitoring may be needed to reliably detect seizures in children supported with ECMO, particularly if monitoring is initiated earlier in the post-cannulation period.


Assuntos
Oxigenação por Membrana Extracorpórea , Estado Epiléptico , Adulto , Criança , Humanos , Estudos Retrospectivos , Convulsões/diagnóstico , Convulsões/terapia , Convulsões/epidemiologia , Eletroencefalografia/métodos , Estado Epiléptico/etiologia
6.
Dev Cogn Neurosci ; 61: 101248, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37120994

RESUMO

In human and nonhuman primates, the amygdala paralaminar nucleus (PL) contains immature neurons. To explore the PL's potential for cellular growth during development, we compared PL neurons in (1) infant and adolescent macaques (control, maternally-reared), and in (2) infant macaques that experienced separation from their mother in the first month of life compared to control maternally-reared infants. In maternally-reared animals, the adolescent PL had fewer immature neurons, more mature neurons, and larger immature soma volumes compared to infant PL. There were also fewer total neurons (immature plus mature) in adolescent versus infant PL, suggesting that some neurons move out of the PL by adolescence. Maternal separation did not change mean immature or mature neuron counts in infant PL. However, across all infant animals, immature neuron soma volume was strongly correlated with mature neuron counts. TBR1 mRNA, a transcript required for glutamatergic neuron maturation, is significantly reduced in the maternally-separated infant PL (DeCampo et al., 2017), and was also positively correlated with mature neuron counts in infant PL. We conclude that immature neurons gradually mature by adolescence, and that the stress of maternal separation may shift this trajectory, as revealed by correlations between TBR1 mRNA and mature neuron numbers across animals.


Assuntos
Tonsila do Cerebelo , Privação Materna , Humanos , Lactente , Animais , Feminino , Adolescente , Tonsila do Cerebelo/fisiologia , Primatas , Neurônios/fisiologia , Macaca
7.
Front Neurol ; 14: 1161161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077567

RESUMO

Introduction: Febrile infection-related epilepsy syndrome (FIRES) is a severe childhood epilepsy with refractory status epilepticus after a typically mild febrile infection. The etiology of FIRES is largely unknown, and outcomes in most individuals with FIRES are poor. Methods: Here, we reviewed the current state-of-the art genetic testing strategies in individuals with FIRES. We performed a systematic computational analysis to identify individuals with FIRES and characterize the clinical landscape using the Electronic Medical Records (EMR). Among 25 individuals with a confirmed FIRES diagnosis over the last decade, we performed a comprehensive review of genetic testing and other diagnostic testing. Results: Management included use of steroids and intravenous immunoglobulin (IVIG) in most individuals, with an increased use of immunomodulatory agents, including IVIG, plasma exchange (PLEX) and immunosuppressants such as cytokine inhibitors, and the ketogenic diet after 2014. Genetic testing was performed on a clinical basis in almost all individuals and was non-diagnostic in all patients. We compared FIRES with both status epilepticus (SE) and refractory status epilepticus (RSE) as a broader comparison cohort and identified genetic causes in 36% of patients with RSE. The difference in genetic signatures between FIRES and RSE suggest distinct underlying etiologies. In summary, despite the absence of any identifiable etiologies in FIRES, we performed an unbiased analysis of the clinical landscape, identifying a heterogeneous range of treatment strategies and characterized real-world clinical practice. Discussion: FIRES remains one of the most enigmatic conditions in child neurology without any known etiologies to date despite significant efforts in the field, suggesting a clear need for further studies and novel diagnostic and treatment approaches.

8.
medRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425705

RESUMO

Background and Objectives: Individuals with disease-causing variants in STXBP1 frequently have epilepsy onset in the first year of life with a variety of seizure types, including epileptic spasms. However, the impact of early-onset seizures and anti-seizure medication (ASM) on the risk of developing epileptic spasms and impact on their trajectory is poorly understood, limiting informed and anticipatory treatment, as well as trial design. Methods: We retrospectively reconstructed seizure and medication histories in weekly intervals for individuals with STXBP1-related disorders with epilepsy onset in the first year of life and quantitatively analyzed longitudinal seizure histories and medication response. Results: We included 61 individuals with early onset seizures, 29 of whom had epileptic spasms. Individuals with neonatal seizures were likely to have continued seizures after the neonatal period (25/26). The risk of developing epileptic spasms was not increased in individuals with neonatal seizures or early infantile seizures (21/41 vs. 8/16; OR 1, 95% CI 0.3-3.9, p = 1). We did not find any ASM associated with the development of epileptic spasms following prior seizures. Individuals with prior seizures (n = 16/21, 76%) had a higher risk to develop refractory epileptic spasms (n = 5/8, 63%, OR =1.9, 95% CI 0.2-14.6, p = 0.6). Individuals with refractory epileptic spasms had a later onset of epileptic spasms (n = 20, median 20 weeks) compared to individuals with non-refractory epileptic spasms (n = 8, median 13 weeks; p = 0.08). When assessing treatment response, we found that clonazepam (n = 3, OR 12.6, 95% CI 2.2-509.4; p < 0.01), clobazam (n=7, OR 3, 95% CI 1.6-6.2; p < 0.01), topiramate (n=9, OR 2.3, 95% CI 1.4-3.9; p < 0.01), and levetiracetam (n=16, OR 1.7, 95% CI 1.2-2.4; p < 0.01) were more likely to reduce seizure frequency and/or to maintain seizure freedom with regards to epileptic spasms than other medications. Discussion: We provide a comprehensive assessment of early-onset seizures in STXBP1-related disorders and show that the risk of epileptic spasms is not increased following a prior history of early-life seizures, nor by certain ASM. Our study provides baseline information for targeted treatment and prognostication in early-life seizures in STXBP1-related disorders.

9.
medRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37215006

RESUMO

STXBP1-related disorders are among the most common genetic epilepsies and neurodevelopmental disorders. However, the longitudinal epilepsy course and developmental endpoints have not yet been described in detail, which is a critical prerequisite for clinical trial readiness. Here, we assessed 1,281 cumulative patient-years of seizure and developmental histories in 162 individuals with STXBP1-related disorders and established a natural history framework. STXBP1-related disorders are characterized by a dynamic pattern of seizures in the first year of life and high variability in neurodevelopmental trajectories in early childhood. Epilepsy onset differed across seizure types, with 90% cumulative onset for infantile spasms by 6 months and focal-onset seizures by 27 months of life. Epilepsy histories diverged between variant subgroups in the first 2 years of life, when individuals with protein-truncating variants and deletions in STXBP1 (n=39) were more likely to have infantile spasms between 5 and 6 months followed by seizure remission, while individuals with missense variants (n=30) had an increased risk for focal seizures and ongoing seizures after the first year. Developmental outcomes were mapped using milestone acquisition data in addition to standardized assessments including the Gross Motor Function Measure-66 Item Set and the Grasping and Visual-Motor Integration subsets of the Peabody Developmental Motor Scales. Quantification of endpoints revealed high variability during the first five years of life, with emerging stratification between clinical subgroups, most prominently between individuals with and without infantile spasms. We found that individuals with neonatal seizures or early infantile seizures followed by seizure offset by 12 months of life had more predictable seizure trajectories in early to late childhood than compared to individuals with more severe seizure presentations, including individuals with refractory epilepsy throughout the first year. Characterization of anti-seizure medication response revealed age-dependent response over time, with phenobarbital, levetiracetam, topiramate, and adrenocorticotropic hormone effective in reducing seizures in the first year of life, while clobazam and the ketogenic diet were effective in long-term seizure management. Virtual clinical trials using seizure frequency as the primary outcome resulted in wide range of trial success probabilities across the age span, with the highest probability in early childhood between 1 year and 3.5 years. In summary, we delineated epilepsy and developmental trajectories in STXBP1-related disorders using standardized measures, providing a foundation to interpret future therapeutic strategies and inform rational trial design.

10.
Pediatr Neurol ; 86: 19-26, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30180999

RESUMO

Prematurity is associated with significant neurological injury and impaired neurodevelopment. In neonatology, ultrasonography is frequently used to assess for neurological injury. Ultrasonography allows rapid bedside imaging without radiation. Its limitations include the need for operator experience, lack of quantification, and lower prognostic power when compared with magnetic resonance imaging. Elastography is one of several technical advances used to enhance the diagnostic capability of traditional ultrasound. By detecting differences in tissue stiffness between normal and abnormal tissue, elastography has the potential to add objective and quantitative data to ultrasound imaging. Quantitative values could then be used to help detect injury, correlate outcome to predict prognosis, and guide surgical intervention. Since developmental processes such as myelination and neuropil formation may also influence brain stiffness, elastography may also serve as a unique tool to further delineate developmental differences between preterm and term infants. In this review, we provide a general overview of elastography, its application in neonatal neuroimaging, and possible future directions.


Assuntos
Encéfalo/diagnóstico por imagem , Técnicas de Imagem por Elasticidade , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Humanos , Recém-Nascido
12.
Brain Struct Funct ; 222(1): 21-39, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26908365

RESUMO

The lateral division of the bed nucleus of the stria terminalis (BSTL) and central nucleus of the amygdala (Ce) form the two poles of the 'central extended amygdala', a theorized subcortical macrostructure important in threat-related processing. Our previous work in nonhuman primates, and humans, demonstrating strong resting fMRI connectivity between the Ce and BSTL regions, provides evidence for the integrated activity of these structures. To further understand the anatomical substrates that underlie this coordinated function, and to investigate the integrity of the central extended amygdala early in life, we examined the intrinsic connectivity between the Ce and BSTL in non-human primates using ex vivo neuronal tract tracing, and in vivo diffusion-weighted imaging and resting fMRI techniques. The tracing studies revealed that BSTL receives strong input from Ce; however, the reciprocal pathway is less robust, implying that the primate Ce is a major modulator of BSTL function. The sublenticular extended amygdala (SLEAc) is strongly and reciprocally connected to both Ce and BSTL, potentially allowing the SLEAc to modulate information flow between the two structures. Longitudinal early-life structural imaging in a separate cohort of monkeys revealed that extended amygdala white matter pathways are in place as early as 3 weeks of age. Interestingly, resting functional connectivity between Ce and BSTL regions increases in coherence from 3 to 7 weeks of age. Taken together, these findings demonstrate a time period during which information flow between Ce and BSTL undergoes postnatal developmental changes likely via direct Ce â†’ BSTL and/or Ce â†” SLEAc â†” BSTL projections.


Assuntos
Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/fisiologia , Núcleos Septais/citologia , Núcleos Septais/fisiologia , Animais , Mapeamento Encefálico , Núcleo Central da Amígdala/crescimento & desenvolvimento , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Macaca mulatta , Masculino , Vias Neurais/citologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Neuroimagem , Núcleos Septais/crescimento & desenvolvimento
13.
J Comp Neurol ; 521(14): 3191-216, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23696521

RESUMO

The lateral bed nucleus of the stria terminalis (BSTL) is involved in mediating anxiety-related behaviors to sustained aversive stimuli. The BSTL forms part of the central extended amygdala, a continuum composed of the BSTL, the amygdala central nucleus, and cell columns running between the two. The central subdivision (BSTLcn) and the juxtacapsular subdivision (BSTLJ) are two BSTL regions that lie above the anterior commissure, near the ventral striatum. The amygdala, a heterogeneous structure that encodes emotional salience, projects to both the BSTL and ventral striatum. We placed small injections of retrograde tracers into the BSTL, focusing on the BSTLcn and BSTLJ, and analyzed the distribution of labeled cells in amygdala subregions. We compared this to the pattern of labeled cells following injections into the ventral striatum. All retrograde results were confirmed by anterograde studies. We found that the BSTLcn receives stronger amygdala inputs relative to the BSTLJ. Furthermore, the BSTLcn is defined by inputs from the corticoamygdaloid transition area and central nucleus, while the BSTLJ receives inputs mainly from the magnocellular accessory basal and basal nucleus. In the ventral striatum, the dorsomedial shell receives inputs that are similar, but not identical, to inputs to the BSTLcn. In contrast, amygdala projections to the ventral shell/core are similar to projections to the BSTLJ. These findings indicate that the BSTLcn and BSTLJ receive distinct amygdala afferent inputs and that the dorsomedial shell is a transition zone with the BSTLcn, while the ventral shell/core are transition zones with the BSTLJ.


Assuntos
Vias Aferentes/fisiologia , Tonsila do Cerebelo/fisiologia , Corpo Estriado/fisiologia , Lateralidade Funcional/fisiologia , Núcleos Septais/citologia , Animais , Autorradiografia , Calbindina 1/metabolismo , Colinesterases/metabolismo , Encefalina Metionina/metabolismo , Isoquinolinas/metabolismo , Macaca nemestrina , Masculino , Neurotensina/metabolismo , Núcleos Septais/metabolismo , Somatostatina/metabolismo , Conjugado Aglutinina do Germe de Trigo-Peroxidase do Rábano Silvestre/metabolismo
14.
Neurosci Biobehav Rev ; 36(1): 520-35, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21906624

RESUMO

The primate amygdala is composed of multiple subnuclei that play distinct roles in amygdala function. While some nuclei have been areas of focused investigation, others remain virtually unknown. One of the more obscure regions of the amygdala is the paralaminar nucleus (PL). The PL in humans and non-human primates is relatively expanded compared to lower species. Long considered to be part of the basal nucleus, the PL has several interesting features that make it unique. These features include a dense concentration of small cells, high concentrations of receptors for corticotropin releasing hormone and benzodiazepines, and dense innervation of serotonergic fibers. More recently, high concentrations of immature-appearing cells have been noted in the primate PL, suggesting special mechanisms of neural plasticity. Following a brief overview of amygdala structure and function, this review will provide an introduction to the history, embryology, anatomical connectivity, immunohistochemical and cytoarchitectural properties of the PL. Our conclusion is that the PL is a unique subregion of the amygdala that may yield important clues about the normal growth and function of the amygdala, particularly in higher species.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Primatas/anatomia & histologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Humanos , Fibras Nervosas/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de GABA-A/metabolismo , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA