Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 27(11): 1879-1891, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635364

RESUMO

The MIR137 locus is a replicated genetic risk factor for schizophrenia. The risk-associated allele is reported to increase miR-137 expression and miR-137 overexpression alters synaptic transmission in mouse hippocampus. We investigated the cellular mechanisms underlying these observed effects in mouse hippocampal neurons in culture. First, we correlated the risk allele to expression of the genes in the MIR137 locus in human postmortem brain. Some evidence for increased MIR137HG expression was observed, especially in hippocampus of the disease-associated genotype. Second, in mouse hippocampal neurons, we confirmed previously observed changes in synaptic transmission upon miR-137 overexpression. Evoked synaptic transmission and spontaneous release were 50% reduced. We identified defects in release probability as the underlying cause. In contrast to previous observations, no evidence was obtained for selective synaptic vesicle docking defects. Instead, ultrastructural morphometry revealed multiple effects of miR-137 overexpression on docking, active zone length and total vesicle number. Moreover, proteomic analyses of neuronal protein showed that expression of Syt1 and Cplx1, previously reported as downregulated upon miR-137 overexpression, was unaltered. Immunocytochemistry of synapses overexpressing miR-137 showed normal Synaptotagmin1 and Complexin1 protein levels. Instead, our proteomic analyses revealed altered expression of genes involved in synaptogenesis. Concomitantly, synaptogenesis assays revealed 31% reduction in synapse formation. Taken together, these data show that miR-137 regulates synaptic function by regulating synaptogenesis, synaptic ultrastructure and synapse function. These effects are plausible contributors to the increased schizophrenia risk associated with miR-137 overexpression.


Assuntos
MicroRNAs/genética , Proteômica , Esquizofrenia/genética , Animais , Autopsia , Exocitose/genética , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Humanos , Camundongos , Neurônios/patologia , Esquizofrenia/fisiopatologia , Sinapses/genética , Transmissão Sináptica/genética , Vesículas Sinápticas/genética
2.
Appl Environ Microbiol ; 77(7): 2337-44, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21317256

RESUMO

Microbial iron oxidation is an integral part of the iron redox cycle in wetlands. Nonetheless, relatively little is known about the composition and ecology of iron-oxidizing communities in the soils and sediments of wetlands. In this study, sediment cores were collected across a freshwater tidal marsh in order to characterize the iron-oxidizing bacteria (FeOB) and to link their distributions to the geochemical properties of the sediments. We applied recently designed 16S rRNA primers targeting Gallionella-related FeOB by using a nested PCR-denaturing gradient gel electrophoresis (DGGE) approach combined with a novel quantitative PCR (qPCR) assay. Gallionella-related FeOB were detected in most of the samples. The diversity and abundance of the putative FeOB were generally higher in the upper 5 to 12 cm of sediment than in deeper sediment and higher in samples collected in April than in those collected in July and October. Oxygen supply by macrofauna appears to be a major force in controlling the spatial and temporal variations in FeOB communities. The higher abundance of Gallionella-related FeOB in April coincided with elevated concentrations of extractable Fe(III) in the sediments. Despite this coincidence, the distributions of FeOB did not exhibit a simple relationship to the redox zonation inferred from the geochemical depth profiles.


Assuntos
Água Doce/microbiologia , Gallionellaceae/classificação , Gallionellaceae/genética , Variação Genética , Ferro/metabolismo , Metagenoma , Áreas Alagadas , Eletroforese em Gel de Gradiente Desnaturante , Oxirredução , Reação em Cadeia da Polimerase , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA