Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 270: 110868, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721313

RESUMO

Acai seed was used herein as an Amazon biomass waste for the synthesis of activated and modified carbon in order to find a possible use for the large volume of residues generated during the processing of this fruit and to add value to this residue. Activated carbon materials were used to remove Pb2+, Fe2+, and Mg2+ metal ions from water. The efficiency of removal of these ions by the acai seed activated carbon was compared with that by commercial activated carbon. Activated carbon materials were prepared by carbonization and chemical activation using two KOH impregnation ratios, namely 1:1 (ACK1) and 5:1 (ACK5), by mass. These samples were modified by treatment with nitric acid under microwave heating (ACK1-M) and (ACK5-M), respectively. The result of the elemental analysis indicated that this biomass has carbon and sulfur contents of 43.29% and 0.10% wt, respectively. The textural parameters showed that the obtained activated carbon samples presented high surface areas between 1462 and 2774 m2 g-1. Raman analysis revealed the different degrees of graphitization of the activated carbon materials. Boehm titration identified the presence of phenolic, carboxylic, and lactonic groups in samples that were confirmed by Fourier transform infrared spectroscopy. In the metal adsorption tests, ACK5-M showed better removal efficiency, reaching 86% removal for Pb2+, 69% for Fe2+, and 8% for Mg2+in 1 h of contact time; these results were superior to those obtained for commercial carbon. The results indicated that acai seed can be used for the production of activated carbon and can also be used for metal removal.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água/análise , Adsorção , Biomassa , Íons , Cinética , Metais , Água
2.
Polymers (Basel) ; 13(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069314

RESUMO

Developing a biomimetic material to wound care is an emerging need for the healing process. Poly (ε-caprolactone) (PCL) is a polymer with the necessary dressing's requirements often used in medicine. Their surface, physic-chemical and biological properties can be modified by adding bioactive compounds, such as andiroba seed oil (Carapa guianensis). This Amazonian natural plant has medicinal and pharmacological properties. For this purpose, PCL polymeric films incorporated with andiroba oil were investigated. The synthesis of hybrids materials was carried out in the solvent casting method. Thermal properties were evaluated using thermogravimetric analysis (TGA/DTGA) and differential scanning calorimetry (DSC). The solvent type on the surface and hydrophilicity of samples was studied using a scanning electron microscope (SEM). Additionally, contact angle measurements, functional groups analysis, fluid absorption capacity, and cell viability were performed. The results demonstrated the influences of andiroba oil under the morphology and thermal properties of the polymeric matrix; the hydrophilicity of the hybrid film obtained by acetic acid was reduced by 13%; the porosity decreased as the concentration of oil increased, but its higher thermal stability. The L929 cell line's proliferation was observed in all materials, and it presented nontoxic nature. It was demonstrated the ability of PCL hybrid film as a matrix for cell growth. Then, the materials were proved potential candidates for biomedical applications.

3.
Bioresour Technol ; 102(17): 8314-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21704520

RESUMO

The distillate produced by deodorization of palm oil (DDPO) is a waste that corresponds to 4% of the product formed in this process. DDPO is 83% free of fatty acids (FFA), making it a good material for biodiesel production. In this paper, a catalyst prepared from a waste material, Amazon flint kaolin, was used for the esterification of DDPO with methanol. Leached metakaolin treated at 950°C and activated with 4M sulfuric acid (labeled as MF9S4) offered maximum esterification activity (92.8%) at 160°C with a DDPO:methanol molar ratio of 1:60 and a 4-h reaction time. The influences of reaction parameters, such as the molar ratio of the reactants, alcohol chain length, temperature, time and the presence of glycerides and unsaponifiable matter, have also been investigated. Based on the catalytic results, esterification of DDPO using MF9S4 can be a cheaper alternative for production of sustainable fuels.


Assuntos
Biocombustíveis , Odorantes , Óleos de Plantas/metabolismo , Eliminação de Resíduos , Catálise , Cinética , Óleo de Palmeira , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA