Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063009

RESUMO

Candida albicans is one of the agents of invasive candidiasis, a life-threatening disease strongly associated with hospitalization, particularly among patients in intensive care units with central venous catheters. This study aimed to evaluate the synergistic activity of the antifungal peptide ToAP2 combined with fluconazole against C. albicans biofilms grown on various materials. We tested combinations of different concentrations of the peptide ToAP2 with fluconazole on C. albicans biofilms. These biofilms were generated on 96-well plates, intravenous catheters, and infusion tubes in RPMI medium at two maturation stages. Scanning electron microscopy and atomic force microscopy were employed to assess the biofilm structure. We also evaluated the expression of genes previously proven to be involved in C. albicans biofilm formation in planktonic and biofilm cells after treatment with the peptide ToAP2 using qPCR. ToAP2 demonstrated a synergistic effect with fluconazole at concentrations up to 25 µM during both the early and mature stages of biofilm formation in 96-well plates and on medical devices. Combinations of 50, 25, and 12.5 µM of ToAP2 with 52 µM of fluconazole significantly reduced the biofilm viability compared to individual treatments and untreated controls. These results were supported by substantial structural changes in the biofilms observed through both scanning and atomic force microscopy. The gene expression analysis of C. albicans cells treated with 25 µM of ToAP2 revealed a decrease in the expression of genes associated with membrane synthesis, along with an increase in the expression of genes involved in efflux pumps, adhesins, and filamentation. Our results highlight the efficacy of the combined ToAP2 and fluconazole treatment against C. albicans biofilms. This combination not only shows therapeutic potential but also suggests its utility in developing preventive biofilm tools for intravenous catheters.


Assuntos
Antifúngicos , Biofilmes , Candida albicans , Sinergismo Farmacológico , Fluconazol , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Fluconazol/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Antifúngicos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Testes de Sensibilidade Microbiana , Humanos , Microscopia de Força Atômica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
J Cell Mol Med ; 26(10): 2793-2807, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35460166

RESUMO

Tryptophyllins constitute a heterogeneous group of peptides that are one of the first classes of peptides identified from amphibian's skin secretions. Here, we report the structural characterization and antioxidant properties of a novel tryptophyllin-like peptide, named PpT-2, isolated from the Iberian green frog Pelophylax perezi. The skin secretion of P. perezi was obtained by electrical stimulation and fractionated using RP-HPLC. De novo peptide sequencing was conducted using MALDI MS/MS. The primary structure of PpT-2 (FPWLLS-NH2 ) was confirmed by Edman degradation and subsequently investigated using in silico tools. PpT-2 shared physicochemical properties with other well-known antioxidants. To test PpT-2 for antioxidant activity in vitro, the peptide was synthesized by solid phase and assessed in the chemical-based ABTS and DPPH scavenging assays. Then, a flow cytometry experiment was conducted to assess PpT-2 antioxidant activity in oxidatively challenged murine microglial cells. As predicted by the in silico analyses, PpT-2 scavenged free radicals in vitro and suppressed the generation of reactive species in PMA-stimulated BV-2 microglia cells. We further explored possible bioactivities of PpT-2 against prostate cancer cells and bacteria, against which the peptide exerted a moderate antiproliferative effect and negligible antimicrobial activity. The biocompatibility of PpT-2 was evaluated in cytotoxicity assays and in vivo toxicity with Galleria mellonella. No toxicity was detected in cells treated with up to 512 µg/ml and in G. mellonella treated with up to 40 mg/kg PpT-2. This novel peptide, PpT-2, stands as a promising peptide with potential therapeutic and biotechnological applications, mainly for the treatment/prevention of neurodegenerative disorders.


Assuntos
Antioxidantes , Fármacos Neuroprotetores , Animais , Antioxidantes/metabolismo , Anuros/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Peptídeos/química , Ranidae/metabolismo , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
3.
Int J Biol Macromol ; 193(Pt A): 100-108, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34627848

RESUMO

In this study, nanoemulsions of essential oil from Ocimumgratissimum (Linn) (EO) were produced using low and high energy techniques using cashew gum (CG) as a co-surfactant. The main constituents of the EO were determined by Gas Chromatography coupled with Mass Spectrometry (GC-MS), and their presence in the EO and in the formulations verified by Fourier Transform Infrared Spectroscopy (FTIR) and UV-visible spectrophotometry was observed the encapsulation efficiency (EE%), with colloidal stability. Nuclear magnetic resonance (NMR) was used to study cashew gum. Dynamic light scattering analysis (DLS) determined the nanoemulsion Z means, polydispersity index and the Zeta potential value, nanoparticle tracking analysis (NTA) were determined. The nanostructured EO showed better antibacterial action against the pathogenic gastroenteritis species Staphylococcus aureus, Escherichia coli and Salmonella enterica when compared to free EO. Atomic Force Microscopy (AFM) was used for morphological analysis of the nanoparticle and study of the action of the nanoemulsion through images of the cellular morphology of S. enterica. The antioxidant activity was evaluated against the ABTS radical (2,2'-azino-bis diazonium salt (3-ethylbenzothiazoline-6-sulfonic acid)). The encapsulation of EO in a nanostructured system improved its antibacterial and antioxidant activity, the low energy synthesis showed greater storage stability, remaining stable for 37 days.


Assuntos
Antibacterianos/química , Emulsões/química , Ocimum/metabolismo , Óleos Voláteis/química , Gomas Vegetais/química , Folhas de Planta/metabolismo
4.
Sci Rep ; 10(1): 10327, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587287

RESUMO

Candida albicans is a major cause of human infections, ranging from relatively simple to treat skin and mucosal diseases to systemic life-threatening invasive candidiasis. Fungal infections treatment faces three major challenges: the limited number of therapeutic options, the toxicity of the available drugs, and the rise of antifungal resistance. In this study, we demonstrate the antifungal activity and mechanism of action of peptides ToAP2 and NDBP-5.7 against planktonic cells and biofilms of C. albicans. Both peptides were active against C. albicans cells; however, ToAP2 was more active and produced more pronounced effects on fungal cells. Both peptides affected C. albicans membrane permeability and produced changes in fungal cell morphology, such as deformations in the cell wall and disruption of ultracellular organization. Both peptides showed synergism with amphotericin B, while ToAP2 also presents a synergic effect with fluconazole. Besides, ToAP2 (6.25 µM.) was able to inhibit filamentation after 24 h of treatment and was active against both the early phase and mature biofilms of C. albicans. Finally, ToAP2 was protective in a Galleria mellonella model of infection. Altogether these results point to the therapeutic potential of ToAP2 and other antimicrobial peptides in the development of new therapies for C. albicans infections.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Animais , Antifúngicos/uso terapêutico , Candidíase/microbiologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Modelos Animais de Doenças , Farmacorresistência Fúngica , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Mariposas , Proteínas Citotóxicas Formadoras de Poros/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA