Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(31): 11401-6, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25024205

RESUMO

The mammalian vertebral column is highly variable, reflecting adaptations to a wide range of lifestyles, from burrowing in moles to flying in bats. However, in many taxa, the number of trunk vertebrae is surprisingly constant. We argue that this constancy results from strong selection against initial changes of these numbers in fast running and agile mammals, whereas such selection is weak in slower-running, sturdier mammals. The rationale is that changes of the number of trunk vertebrae require homeotic transformations from trunk into sacral vertebrae, or vice versa, and mutations toward such transformations generally produce transitional lumbosacral vertebrae that are incompletely fused to the sacrum. We hypothesize that such incomplete homeotic transformations impair flexibility of the lumbosacral joint and thereby threaten survival in species that depend on axial mobility for speed and agility. Such transformations will only marginally affect performance in slow, sturdy species, so that sufficient individuals with transitional vertebrae survive to allow eventual evolutionary changes of trunk vertebral numbers. We present data on fast and slow carnivores and artiodactyls and on slow afrotherians and monotremes that strongly support this hypothesis. The conclusion is that the selective constraints on the count of trunk vertebrae stem from a combination of developmental and biomechanical constraints.


Assuntos
Evolução Biológica , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Corrida/fisiologia , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/fisiologia , Animais , Animais Domésticos , Fenômenos Biomecânicos , Tamanho Corporal , Endogamia , Vértebras Lombares/anatomia & histologia , Vértebras Lombares/fisiologia , Sacro/anatomia & histologia , Sacro/fisiologia , Especificidade da Espécie
3.
Zookeys ; (605): 1-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551210

RESUMO

The Phyllidiidae (Gastropoda, Heterobranchia, Nudibranchia) is a family of colourful nudibranchs found on Indo-Pacific coral reefs. Despite the abundant and widespread occurrence of many species, their phylogenetic relationships are not well known. The present study is the first contribution to fill the gap in our knowledge on their phylogeny by combining morphological and molecular data. For that purpose 99 specimens belonging to 16 species were collected at two localities in Indonesia. They were photographed and used to make a phylogeny reconstruction based on newly obtained cytochrome oxidase subunit (COI) sequences as well as sequence data from GenBank. All mitochondrial 16S sequence data available from GenBank were used in a separate phylogeny reconstruction to obtain information for species we did not collect. COI data allowed the distinction of the genera and species, whereas the 16S data gave a mixed result with respect to the genera Phyllidia and Phyllidiella. Specimens which could be ascribed to species level based on their external morphology and colour patterns showed low variation in COI sequences, but there were two exceptions: three specimens identified as Phyllidia cf. babai represent two to three different species, while Phyllidiella pustulosa showed highly supported subclades. The barcoding marker COI also confirms that the species boundaries in morphologically highly variable species such as Phyllidia elegans, Phyllidia varicosa, and Phyllidiopsis krempfi, are correct as presently understood. In the COI as well as the 16S cladogram Phyllidiopsis cardinalis was located separately from all other Phyllidiidae, whereas Phyllidiopsis fissuratus was positioned alone from the Phyllidiella species by COI data only. Future studies on phyllidiid systematics should continue to combine morphological information with DNA sequences to obtain a clearer insight in their phylogeny.

4.
Evodevo ; 2: 11, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21548920

RESUMO

BACKGROUND: Mammals as a rule have seven cervical vertebrae, except for sloths and manatees. Bateson proposed that the change in the number of cervical vertebrae in sloths is due to homeotic transformations. A recent hypothesis proposes that the number of cervical vertebrae in sloths is unchanged and that instead the derived pattern is due to abnormal primaxial/abaxial patterning. RESULTS: We test the detailed predictions derived from both hypotheses for the skeletal patterns in sloths and manatees for both hypotheses. We find strong support for Bateson's homeosis hypothesis. The observed vertebral and rib patterns cannot be explained by changes in primaxial/abaxial patterning. Vertebral patterns in sloths and manatees are similar to those in mice and humans with abnormal numbers of cervical vertebrae: incomplete and asymmetric homeotic transformations are common and associated with skeletal abnormalities. In sloths the homeotic vertebral shift involves a large part of the vertebral column. As such, similarity is greatest with mice mutant for genes upstream of Hox. CONCLUSIONS: We found no skeletal abnormalities in specimens of sister taxa with a normal number of cervical vertebrae. However, we always found such abnormalities in conspecifics with an abnormal number, as in many of the investigated dugongs. These findings strongly support the hypothesis that the evolutionary constraints on changes of the number of cervical vertebrae in mammals is due to deleterious pleitropic effects. We hypothesize that in sloths and manatees low metabolic and activity rates severely reduce the usual stabilizing selection, allowing the breaking of the pleiotropic constraints. This probably also applies to dugongs, although to a lesser extent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA