Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Ecol ; 26(4): 1008-1021, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27997066

RESUMO

Understanding spatial patterns of gene flow and genetic structure is essential for the conservation of marine ecosystems. Contemporary ocean currents and historical isolation due to Pleistocene sea level fluctuations have been predicted to influence the genetic structure in marine populations. In the Indo-Australian Archipelago (IAA), the world's hotspot of marine biodiversity, seagrasses are a vital component but population genetic information is very limited. Here, we reconstructed the phylogeography of the seagrass Thalassia hemprichii in the IAA based on single nucleotide polymorphisms (SNPs) and then characterized the genetic structure based on a panel of 16 microsatellite markers. We further examined the relative importance of historical isolation and contemporary ocean currents in driving the patterns of genetic structure. Results from SNPs revealed three population groups: eastern Indonesia, western Indonesia (Sunda Shelf) and Indian Ocean; while the microsatellites supported five population groups (eastern Indonesia, Sunda Shelf, Lesser Sunda, Western Australia and Indian Ocean). Both SNPs and microsatellites showed asymmetrical gene flow among population groups with a trend of southwestward migration from eastern Indonesia. Genetic diversity was generally higher in eastern Indonesia and decreased southwestward. The pattern of genetic structure and connectivity is attributed partly to the Pleistocene sea level fluctuations modified to a smaller level by contemporary ocean currents.


Assuntos
Genética Populacional , Hydrocharitaceae/genética , Movimentos da Água , Austrália , Fluxo Gênico , Variação Genética , Oceano Índico , Indonésia , Repetições de Microssatélites , Oceano Pacífico , Filogeografia , Polimorfismo de Nucleotídeo Único , Austrália Ocidental
2.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-25297859

RESUMO

A movement ecology framework is applied to enhance our understanding of the causes, mechanisms and consequences of movement in seagrasses: marine, clonal, flowering plants. Four life-history stages of seagrasses can move: pollen, sexual propagules, vegetative fragments and the spread of individuals through clonal growth. Movement occurs on the water surface, in the water column, on or in the sediment, via animal vectors and through spreading clones. A capacity for long-distance dispersal and demographic connectivity over multiple timeframes is the novel feature of the movement ecology of seagrasses with significant evolutionary and ecological consequences. The space-time movement footprint of different life-history stages varies. For example, the distance moved by reproductive propagules and vegetative expansion via clonal growth is similar, but the timescales range exponentially, from hours to months or centuries to millennia, respectively. Consequently, environmental factors and key traits that interact to influence movement also operate on vastly different spatial and temporal scales. Six key future research areas have been identified.


Assuntos
Alismatales/fisiologia , Alismatales/crescimento & desenvolvimento , Dinâmica Populacional , Reprodução
3.
Biology (Basel) ; 13(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38927241

RESUMO

Conifers are an ecologically and economically important seed plant group that can provide significant insights into the evolution of land plants. Molecular phylogenetics has developed as an important approach in evolutionary studies, although there have been relatively few studies of conifers that employ large-scale data sourced from multiple nuclear genes. Target enrichment sequencing (target capture, exon capture, or Hyb-Seq) has developed as a key approach in modern phylogenomic studies. However, until now, there has been no bait set that specifically targets the entire conifer clade. REMcon is a target sequence capture probe set intended for family- and species-level phylogenetic studies of conifers that target c. 100 single-copy nuclear loci. We tested the REMcon probe set using 69 species, including 44 conifer genera across six families and four other gymnosperm taxa, to evaluate the efficiency of target capture to efficiently generate comparable DNA sequence data across conifers. The recovery of target loci was high, with, on average, 94% of the targeted regions recovered across samples with high read coverage. A phylogenetic analysis of these data produced a well-supported topology that is consistent with the current understanding of relationships among conifers. The REMcon bait set will be useful in generating relatively large-scale nuclear data sets consistently for any conifer lineage.

4.
Ecol Evol ; 13(7): e10257, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404702

RESUMO

Understanding patterns of gene flow and processes driving genetic differentiation is important for a broad range of conservation practices. In marine organisms, genetic differentiation among populations is influenced by a range of spatial, oceanographic, and environmental factors that are attributed to the seascape. The relative influences of these factors may vary in different locations and can be measured using seascape genetic approaches. Here, we applied a seascape genetic approach to populations of the seagrass, Thalassia hemprichii, at a fine spatial scale (~80 km) in the Kimberley coast, western Australia, a complex seascape with strong, multidirectional currents greatly influenced by extreme tidal ranges (up to 11 m, the world's largest tropical tides). We incorporated genetic data from a panel of 16 microsatellite markers, overwater distance, oceanographic data derived from predicted passive dispersal on a 2 km-resolution hydrodynamic model, and habitat characteristics from each meadow sampled. We detected significant spatial genetic structure and asymmetric gene flow, in which meadows 12-14 km apart were less connected than ones 30-50 km apart. This pattern was explained by oceanographic connectivity and differences in habitat characteristics, suggesting a combined scenario of dispersal limitation and facilitation by ocean current with local adaptation. Our findings add to the growing evidence for the key role of seascape attributes in driving spatial patterns of gene flow. Despite the potential for long-distance dispersal, there was significant genetic structuring over small spatial scales implicating dispersal and recruitment bottlenecks and highlighting the importance of implementing local-scale conservation and management measures.

5.
Ecol Evol ; 12(4): e8816, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35432922

RESUMO

Metabarcoding has improved the way we understand plants within our environment, from their ecology and conservation to invasive species management. The notion of identifying plant taxa within environmental samples relies on the ability to match unknown sequences to known reference libraries. Without comprehensive reference databases, species can go undetected or be incorrectly assigned, leading to false-positive and false-negative detections. To improve our ability to generate reference sequence databases, we developed a targeted capture approach using the OZBaits_CP V1.0 set, designed to capture chloroplast gene regions across the entirety of flowering plant diversity. We focused on generating a reference database for coastal temperate plant species given the lack of reference sequences for these taxa. Our approach was successful across all specimens with a target gene recovery rate of 92%, which was achieved in a single assay (i.e., samples were pooled), thus making this approach much faster and more efficient than standard barcoding. Further testing of this database highlighted 80% of all samples could be discriminated to family level across all gene regions with some genes achieving greater resolution than others-which was also dependent on the taxon of interest. Thus, we demonstrate the importance of generating reference sequences across multiple chloroplast gene regions as no single loci are sufficient to discriminate across all plant groups. The targeted capture approach outlined in this study provides a way forward to achieve this.

6.
Sci Rep ; 12(1): 21997, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539480

RESUMO

Falsified medicines are a major threat to global health. Antimalarial drugs have been particularly targeted by criminals. As DNA analysis has revolutionized forensic criminology, we hypothesized that these techniques could also be used to investigate the origins of falsified medicines. Medicines may contain diverse adventitious biological contamination, and the sealed nature of blister-packages may capture and preserve genetic signals from the manufacturing processes allowing identification of production source(s). We conducted a blinded pilot study to determine if such environmental DNA (eDNA) could be detected in eleven samples of falsified and genuine artesunate antimalarial tablets, collected in SE Asia, which could be indicative of origin. Massively Parallel Sequencing (MPS) was used to characterize microbial and eukaryote diversity. Two mitochondrial DNA analysis approaches were explored to detect the presence of human DNA. Trace eDNA from these low biomass samples demonstrated sample specific signals using two target markers. Significant differences in bacterial and eukaryote DNA community structures were observed between genuine and falsified tablets and between different packaging types of falsified artesunate. Human DNA, which was indicative of likely east Asian ancestry, was found in falsified tablets. This pilot study of the 'pharmabiome' shows the potential of environmental DNA as a powerful forensic tool to assist with the identification of the environments, and hence location and timing, of the source and manufacture of falsified medicines, establish links between seizures and complement existing tools to build a more complete picture of criminal trade routes. The finding of human DNA in tablets raises important ethical issues that need to be addressed.


Assuntos
Antimaláricos , Medicamentos Falsificados , DNA Ambiental , Humanos , Artesunato , Projetos Piloto , Medicamentos Falsificados/análise , Comprimidos
7.
PLoS One ; 13(9): e0203644, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30183774

RESUMO

Evaluating genetic diversity of seagrasses provides insight into reproductive mode and adaptation potential, and is therefore integral to broader conservation strategies for coastal ecosystems. In this study, we assessed genetic diversity, population structure and gene flow in an opportunistic seagrass, Syringodium filiforme, in the Florida Keys and subtropical Atlantic region. We used microsatellite markers to analyze 20 populations throughout the Florida Keys, South Florida, Bermuda and the Bahamas primarily to understand how genetic diversity of S. filiforme partitions across the Florida Keys archipelago. We found low allelic diversity within populations, detecting 35-106 alleles across all populations, and in some instances moderately high clonal diversity (R = 0.04-0.62). There was significant genetic differentiation between Atlantic and Gulf of Mexico (Gulf) populations (FST = 0.109 ± 0.027, p-value = 0.001) and evidence of population structure based on cluster assignment, dividing the region into two major genetic demes. We observed asymmetric patterns in gene flow, with a few instances in which there was higher than expected gene flow from Atlantic to Gulf populations. In South Florida, clustering into Gulf and Atlantic groups indicate dispersal in S. filiforme may be limited by historical or contemporary geographic and hydrologic barriers, though genetic admixture between populations suggests exchange may occur between narrow channels in the Florida Keys, or has occurred through other mechanisms in recent evolutionary history, maintaining regional connectivity. The variable genotypic diversity, low genetic diversity and evidence of population structure observed in populations of S. filiforme resemble the population genetics expected for a colonizer species.


Assuntos
Fluxo Gênico , Magnoliopsida/genética , Oceano Atlântico , Conservação dos Recursos Naturais , Florida , Variação Genética , Genótipo , Golfo do México , Dinâmica Populacional
8.
Ecol Evol ; 8(18): 9478-9490, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30377516

RESUMO

Many marine species have widespread geographic ranges derived from their evolutionary and ecological history particularly their modes of dispersal. Seagrass (marine angiosperm) species have ranges that are unusually widespread, which is not unexpected following recent reviews of reproductive strategies demonstrating the potential for long-distance dispersal combined with longevity through clonality. An exemplar of these dual biological features is turtle grass (Thalassia testudinum) which is an ecologically important species throughout the tropical Atlantic region. Turtle grass has been documented to have long-distance dispersal via floating fruits and also extreme clonality and longevity. We hypothesize that across its range, Thalassia testudinum will have very limited regional population structure due to these characteristics and under typical models of population structure would expect to detect high levels of genetic connectivity. There are very few studies of range-wide genetic connectivity documented for seagrasses or other sessile marine species. This study presents a population genetic dataset that represents a geographic area exceeding 14,000 km2. Population genetic diversity was evaluated from 32 Thalassia testudinum populations sampled across the Caribbean and Gulf of Mexico. Genotypes were based on nine microsatellites, and haplotypes were based on chloroplast DNA sequences. Very limited phylogeographic signal from cpDNA reduced the potential comparative analyses possible. Multiple analytical clustering approaches on population genetic data revealed two significant genetic partitions: (a) the Caribbean and (b) the Gulf of Mexico. Genetic diversity was high (H E = 0.641), and isolation by distance was significant; gene flow and migration estimates across the entire range were however modest, we suggest that the frequency of successful recruitment across the range is uncommon. Thalassia testudinum maintains genetic diversity across its entire distribution range. The genetic split may be explained by genetic drift during recolonization from refugia following relatively recent reduction in available habitat such as the last glacial maxima.

9.
Front Plant Sci ; 8: 2026, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259609

RESUMO

Clonality is common in many aquatic plant species, including seagrasses, where populations are maintained through a combination of asexual and sexual reproduction. One common measure used to describe the clonal structure of populations is clonal richness. Clonal richness is strongly dependent on the biological characteristics of the species, and how these interact with the environment but can also reflect evolutionary scale processes especially at the edge of species ranges. However, little is known about the spatial patterns and drivers of clonal richness in tropical seagrasses. This study assessed the spatial patterns of clonal richness in meadows of three tropical seagrass species, Thalassia hemprichii, Halodule uninervis, and Halophila ovalis, spanning a range of life-history strategies and spatial scales (2.5-4,711 km) in Indonesia and NW Australia. We further investigated the drivers of clonal richness using general additive mixed models for two of the species, H. uninervis and H. ovalis, over 8° latitude. No significant patterns were observed in clonal richness with latitude, yet disturbance combined with sea surface temperature strongly predicted spatial patterns of clonal richness. Sites with a high probability of cyclone disturbance had low clonal richness, whereas an intermediate probability of cyclone disturbance and the presence of dugong grazing combined with higher sea surface temperatures resulted in higher levels of clonal richness. We propose potential mechanisms for these patterns related to the recruitment and mortality rates of individuals as well as reproductive effort. Under a changing climate, increased severity of tropical cyclones and the decline in populations of mega-grazers have the potential to reduce clonal richness leading to less genetically diverse populations.

10.
Mar Environ Res ; 127: 163-172, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27342125

RESUMO

Seagrass species form important marine and estuarine habitats providing valuable ecosystem services and functions. Coastal zones that are increasingly impacted by anthropogenic development have experienced substantial declines in seagrass abundance around the world. Australia, which has some of the world's largest seagrass meadows and is home to over half of the known species, is not immune to these losses. In 1999 a review of seagrass ecosystems knowledge was conducted in Australia and strategic research priorities were developed to provide research direction for future studies and management. Subsequent rapid evolution of seagrass research and scientific methods has led to more than 70% of peer reviewed seagrass literature being produced since that time. A workshop was held as part of the Australian Marine Sciences Association conference in July 2015 in Geelong, Victoria, to update and redefine strategic priorities in seagrass research. Participants identified 40 research questions from 10 research fields (taxonomy and systematics, physiology, population biology, sediment biogeochemistry and microbiology, ecosystem function, faunal habitats, threats, rehabilitation and restoration, mapping and monitoring, management tools) as priorities for future research on Australian seagrasses. Progress in research will rely on advances in areas such as remote sensing, genomic tools, microsensors, computer modeling, and statistical analyses. A more interdisciplinary approach will be needed to facilitate greater understanding of the complex interactions among seagrasses and their environment.


Assuntos
Alismatales , Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental/métodos , Austrália
11.
Ecol Evol ; 6(15): 5542-5556, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27942375

RESUMO

The high prevalence of dioecy in marine angiosperms or seagrasses (>50% of all species) is thought to enforce cross-fertilization. However, seagrasses are clonal plants, and they may still be subject to sibling-mating or bi-parental inbreeding if the genetic neighborhood is smaller than the size of the genets. We tested this by determining the genetic neighborhoods of the dioecious seagrass Thalassia testudinum at two sites (Back-Reef and Mid-Lagoon) in Puerto Morelos Reef Lagoon, Mexico, by measuring dispersal of pollen and seeds in situ, and by fine-scale spatial autocorrelation analysis with eight polymorphic microsatellite DNA markers. Prevalence of inbreeding was verified by estimating pairwise kinship coefficients; and by analysing the genotypes of seedlings grown from seeds in mesocosms. Average dispersal of pollen was 0.3-1.6 m (max. 4.8 m) and of seeds was 0.3-0.4 m (max. 1.8 m), resulting in a neighborhood area of 7.4 m2 (range 3.4-11.4 m2) at Back-Reef and 1.9 (range 1.87-1.92 m2) at Mid-Lagoon. Neighborhood area (Na) derived from spatial autocorrelation was 0.1-20.5 m2 at Back-Reef and 0.1-16.9 m2 at Mid-Lagoon. Maximal extensions of the genets, in 19 × 30 m plots, were 19.2 m (median 7.5 m) and 10.8 m (median 4.8 m) at Back-Reef and Mid-Lagoon. There was no indication of deficit or excess of heterozygotes nor were coefficients of inbreeding (FIS) significant. The seedlings did not show statistically significant deficit of heterozygotes (except for 1 locus at Back-Reef). Contrary to our expectations, we did not find evidence of bi-parental inbreeding in this dioecious seagrass with large genets but small genetic neighborhoods. Proposed mechanisms to avoid bi-parental inbreeding are possible selection against homozygotes during fecundation or ovule development. Additionally, the genets grew highly dispersed (aggregation index Ac was 0.09 and 0.10 for Back-Reef and Mid-Lagoon, respectively); such highly dispersed guerrilla-like clonal growth form likely increases the probability of crossing between different potentially unrelated genets.

12.
Appl Plant Sci ; 2(11)2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25383269

RESUMO

PREMISE OF THE STUDY: New microsatellites were developed for the seagrass Thalassia hemprichii (Hydrocharitaceae), a long-lived seagrass species that is found throughout the shallow waters of tropical and subtropical Indo-West Pacific. Three multiplex PCR panels were designed utilizing new and previously developed markers, resulting in a toolkit for generating a 16-locus genotype. • METHODS AND RESULTS: Through the use of microsatellite enrichment and next-generation sequencing, 16 new, validated, polymorphic microsatellite markers were isolated. Diversity was between two and four alleles per locus totaling 36 alleles. These markers, plus previously developed microsatellite markers for T. hemprichii and T. testudinum, were tested for suitability in multiplex PCR panels. • CONCLUSIONS: The generation of an easily replicated suite of multiplex panels of codominant molecular markers will allow for high-resolution and detailed genetic structure analysis and clonality assessment with minimal genotyping costs. We suggest the establishment of a T. hemprichii primer convention for the unification of future data sets.

13.
Appl Plant Sci ; 2(10)2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25309842

RESUMO

PREMISE OF THE STUDY: A total of 17 polymorphic microsatellite markers were developed for the tropical Atlantic seagrass Syringodium filiforme (Cymodoceaceae), enabling analysis of population genetic structure in this species for the first time. • METHODS AND RESULTS: The 17 primers amplified di- and trinucleotide repeats revealing two to eight alleles per locus among the South Florida populations tested. In the analysis of two populations from the Florida Keys (Florida, USA), observed heterozygosity ranged from 0.063 to 0.905, although sampling was from relatively closely located populations so heterozygosity is expected to be higher across larger spatial scales. Multiplex PCRs consisting of two 6-plex and one 5-plex reactions were developed to maximize genotyping efficiency. • CONCLUSIONS: We present here 17 polymorphic markers that will be useful for the study of clonality and population structure of S. filiforme, a marine plant that forms extensive habitat throughout the tropical Atlantic and Caribbean.

14.
PLoS One ; 9(4): e94014, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24705377

RESUMO

Halophytes, such as seagrasses, predominantly form habitats in coastal and estuarine areas. These habitats can be seasonally exposed to hypo-salinity events during watershed runoff exposing them to dramatic salinity shifts and osmotic shock. The manifestation of this osmotic shock on seagrass morphology and phenology was tested in three Indo-Pacific seagrass species, Halophila ovalis, Halodule uninervis and Zostera muelleri, to hypo-salinity ranging from 3 to 36 PSU at 3 PSU increments for 10 weeks. All three species had broad salinity tolerance but demonstrated a moderate hypo-salinity stress response--analogous to a stress induced morphometric response (SIMR). Shoot proliferation occurred at salinities <30 PSU, with the largest increases, up to 400% increase in shoot density, occurring at the sub-lethal salinities <15 PSU, with the specific salinity associated with peak shoot density being variable among species. Resources were not diverted away from leaf growth or shoot development to support the new shoot production. However, at sub-lethal salinities where shoots proliferated, flowering was severely reduced for H. ovalis, the only species to flower during this experiment, demonstrating a diversion of resources away from sexual reproduction to support the investment in new shoots. This SIMR response preceded mortality, which occurred at 3 PSU for H. ovalis and 6 PSU for H. uninervis, while complete mortality was not reached for Z. muelleri. This is the first study to identify a SIMR in seagrasses, being detectable due to the fine resolution of salinity treatments tested. The detection of SIMR demonstrates the need for caution in interpreting in-situ changes in shoot density as shoot proliferation could be interpreted as a healthy or positive plant response to environmental conditions, when in fact it could signal pre-mortality stress.


Assuntos
Pressão Osmótica , Salinidade , Plantas Tolerantes a Sal/anatomia & histologia , Plantas Tolerantes a Sal/fisiologia , Ecossistema , Fenótipo , Folhas de Planta , Brotos de Planta/crescimento & desenvolvimento , Reprodução , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA