Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(21): 3063-3077, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37552066

RESUMO

Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.


Assuntos
Deficiência Intelectual , Megalencefalia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Criança , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Caenorhabditis elegans/metabolismo , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Fenótipo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Megalencefalia/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto/genética , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
2.
Am J Hum Genet ; 109(3): 518-532, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35108495

RESUMO

Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaΔ mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaΔ mutants displayed a trend toward increased amounts of α-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.


Assuntos
Transtornos do Neurodesenvolvimento , Doenças do Sistema Nervoso Periférico , Animais , Axônios/metabolismo , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular Neuronais , Humanos , Camundongos , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Espasticidade Muscular/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Mol Psychiatry ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454084

RESUMO

Clustering Epilepsy (CE) is a neurological disorder caused by pathogenic variants of the Protocadherin 19 (PCDH19) gene. PCDH19 encodes a protein involved in cell adhesion and Estrogen Receptor α mediated-gene regulation. To gain further insights into the molecular role of PCDH19 in the brain, we investigated the PCDH19 interactome in the developing mouse hippocampus and cortex. Combined with a meta-analysis of all reported PCDH19 interacting proteins, our results show that PCDH19 interacts with proteins involved in actin, microtubule, and gene regulation. We report CAPZA1, αN-catenin and, importantly, ß-catenin as novel PCDH19 interacting proteins. Furthermore, we show that PCDH19 is a regulator of ß-catenin transcriptional activity, and that this pathway is disrupted in CE individuals. Overall, our results support the involvement of PCDH19 in the cytoskeletal network and point to signalling pathways where PCDH19 plays critical roles.

4.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526744

RESUMO

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


Assuntos
Proteínas Ativadoras de GTPase , Heterozigoto , Microcefalia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Humanos , Microcefalia/genética , Feminino , Masculino , Pré-Escolar , Proteínas Ativadoras de GTPase/genética , Criança , Transtornos do Neurodesenvolvimento/genética , Mutação com Perda de Função , Animais , Deficiências do Desenvolvimento/genética , Camundongos , Lactente , Fenótipo , Adolescente
5.
Genet Med ; 24(11): 2351-2366, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36083290

RESUMO

PURPOSE: Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. METHODS: Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. RESULTS: The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. CONCLUSION: NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Fenótipo , Transtornos do Neurodesenvolvimento/genética , Via de Sinalização Wnt/genética , Deficiência Intelectual/genética , Genômica , beta Catenina/genética
6.
Hum Mol Genet ; 28(18): 3000-3012, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31071221

RESUMO

Inflammation is activated prior to symptoms in neurodegenerative diseases, providing a plausible pathogenic mechanism. Indeed, genetic and pharmacological ablation studies in animal models of several neurodegenerative diseases demonstrate that inflammation is required for pathology. However, while there is growing evidence that inflammation-mediated pathology may be the common mechanism underlying neurodegenerative diseases, including those due to dominantly inherited expanded repeats, the proximal causal agent is unknown. Expanded CAG.CUG repeat double-stranded RNA causes inflammation-mediated pathology when expressed in Drosophila. Repeat dsRNA is recognized by Dicer-2 as a foreign or 'non-self' molecule triggering both antiviral RNA and RNAi pathways. Neither of the RNAi pathway cofactors R2D2 nor loquacious are necessary, indicating antiviral RNA activation. RNA modification enables avoidance of recognition as 'non-self' by the innate inflammatory surveillance system. Human ADAR1 edits RNA conferring 'self' status and when co-expressed with expanded CAG.CUG dsRNA in Drosophila the pathology is lost. Cricket Paralysis Virus protein CrPV-1A is a known antagonist of Argonaute-2 in Drosophila antiviral defense. CrPV-1A co-expression also rescues pathogenesis, confirming anti-viral-RNA response. Repeat expansion mutation therefore confers 'non-self' recognition of endogenous RNA, thereby providing a proximal, autoinflammatory trigger for expanded repeat neurodegenerative diseases.


Assuntos
Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Mutação , Doenças Neurodegenerativas/genética , RNA de Cadeia Dupla/genética , Expansão das Repetições de Trinucleotídeos , Viroses/genética , Animais , Proteínas Argonautas/metabolismo , Variações do Número de Cópias de DNA , Dicistroviridae/fisiologia , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/metabolismo , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/patologia , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Viroses/complicações , Viroses/virologia
7.
Dev Med Child Neurol ; 62(9): 1024-1030, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32542675

RESUMO

AIM: To conduct a systematic review of phenotypic definition and case ascertainment in published genetic studies of cerebral palsy (CP) to inform guidelines for the reporting of such studies. METHOD: Inclusion criteria comprised genetic studies of candidate genes, with CP as the outcome, published between 1990 and 2019 in the PubMed, Embase, and BIOSIS Citation Index databases. RESULTS: Fifty-seven studies met the inclusion criteria. We appraised how CP was defined, the quality of information on case ascertainment, and compliance with international consensus guidelines. Seven studies (12%) were poorly described, 33 studies (58%) gave incomplete information, and 17 studies (30%) were well described. Missing key information precluded determining how many studies complied with the definition by Rosenbaum et al. Only 18 out of 57 studies (32%) were compliant with the Surveillance of Cerebral Palsy in Europe (SCPE) international guidelines on defining CP. INTERPRETATION: Limited compliance with international consensus guidelines on phenotypic definition and mediocre reporting of CP case ascertainment hinders the comparison of results among genetic studies of CP (including meta-analyses), thereby limiting the quality, interpretability, and generalizability of study findings. Compliance with the SCPE guidelines is important for ongoing gene discovery efforts in CP, given the potential for misclassification of unrelated neurological conditions as CP.


Assuntos
Paralisia Cerebral/diagnóstico , Paralisia Cerebral/genética , Consenso , Bases de Dados Factuais , Guias como Assunto , Humanos , Fenótipo , Vigilância da População , Sistema de Registros
8.
Hum Mol Genet ; 21(3): 536-47, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22021427

RESUMO

Homopolymeric amino acid repeat sequences in proteins are of particular interest due to the discovery that expanded copy numbers of these repeats are the molecular basis for a growing list of human genetic diseases. Repeat copy numbers above a typical normal range of polyglutamine repeats have been found to be the principal pathogenic agents in a number of these diseases, including Huntington's disease. There is emerging evidence that expansions of amino acids encoded by other reading frames of CAG/CUG repeats, including polyalanine and polyleucine, could contribute to toxicity in the 'polyglutamine' diseases. We have therefore used the Drosophila model system to investigate effects of ectopic expression of polyglutamine, polyleucine and polyalanine repeats in vivo to assess their relative toxicities and the common and distinct characteristics of the pathogenesis that they cause. We find that these homopolymeric sequences all exhibit toxicity and are able to form aggregates in Drosophila, although there are marked differences in the degree of toxicity dependent upon the tissue in which they are expressed.


Assuntos
Peptídeos/toxicidade , Animais , Animais Geneticamente Modificados , Química Encefálica , Drosophila/genética , Drosophila/metabolismo , Drosophila/ultraestrutura , Olho/metabolismo , Olho/ultraestrutura , Masculino , Modelos Animais , Doenças do Sistema Nervoso/genética , Neurônios/fisiologia , Peptídeos/genética , Peptídeos/metabolismo , Sequências Repetitivas de Aminoácidos , Expansão das Repetições de Trinucleotídeos
9.
Transl Psychiatry ; 14(1): 65, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280856

RESUMO

Clustering Epilepsy (CE) is an epileptic disorder with neurological comorbidities caused by heterozygous variants of the X chromosome gene Protocadherin 19 (PCDH19). Recent studies have implicated dysregulation of the Nuclear Hormone Receptor (NHR) pathway in CE pathogenesis. To obtain a comprehensive overview of the impact and mechanisms of loss of PCDH19 function in CE pathogenesis, we have performed epigenomic, transcriptomic and proteomic analysis of CE relevant models. Our studies identified differential regulation and expression of Androgen Receptor (AR) and its targets in CE patient skin fibroblasts. Furthermore, our cell culture assays revealed the repression of PCDH19 expression mediated through ERα and the co-regulator FOXA1. We also identified a protein-protein interaction between PCDH19 and AR, expanding upon the intrinsic link between PCDH19 and the NHR pathway. Together, these results point to a novel mechanism of NHR signaling in the pathogenesis of CE that can be explored for potential therapeutic options.


Assuntos
Caderinas , Epilepsia , Humanos , Caderinas/genética , Protocaderinas , Multiômica , Proteômica , Epilepsia/genética , Análise por Conglomerados
10.
Nat Commun ; 15(1): 1210, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331934

RESUMO

We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.


Assuntos
Deficiência Intelectual , Fatores de Transcrição , Humanos , Masculino , Camundongos , Animais , Fatores de Transcrição/metabolismo , Estruturas R-Loop , Transporte Ativo do Núcleo Celular , Deficiência Intelectual/genética , Dano ao DNA , Fenótipo , RNA Mensageiro/metabolismo
11.
Hum Mol Genet ; 20(19): 3757-68, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21724553

RESUMO

The pathogenic agent responsible for the expanded repeat diseases, a group of neurodegenerative diseases that includes Huntington's disease is not yet fully understood. Expanded polyglutamine (polyQ) is thought to be the toxic agent in certain cases, however, not all expanded repeat disease genes can encode a polyQ sequence. Since a repeat-containing RNA intermediary is common to all of these diseases, hairpin-forming single-stranded RNA has been investigated as a potential common pathogenic agent. More recently, it has become apparent that most of the expanded repeat disease loci have transcription occurring from both strands, raising the possibility that the complementary repeat RNAs could form a double-stranded structure. In our investigation using Drosophila models of these diseases, we identified a fortuitous integration event that models bidirectional repeat RNA transcription with the resultant flies exhibiting inducible pathology. We therefore established further lines of Drosophila expressing independent complementary repeat RNAs and found that these are toxic. The Dicer pathway is essential for this toxicity and in neuronal cells accounts for metabolism of the high copy number (CAG.CUG)(100) double-stranded RNAs down to (CAG)(7) single-stranded small RNAs. We also observe significant changes to the microRNA profile in neurons. These data identify a novel pathway through which double-stranded repeat RNA is toxic and capable of eliciting symptoms common to neurodegenerative human diseases resulting from dominantly inherited expanded repeats.


Assuntos
Drosophila/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Expansão das Repetições de Trinucleotídeos , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Humanos , Masculino , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Conformação de Ácido Nucleico , RNA Helicases/genética , RNA Helicases/metabolismo , RNA de Cadeia Dupla/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
12.
Hum Mol Genet ; 20(14): 2783-94, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21518731

RESUMO

Recent evidence supports a role for RNA as a common pathogenic agent in both the 'polyglutamine' and 'untranslated' dominant expanded repeat disorders. One feature of all repeat sequences currently associated with disease is their predicted ability to form a hairpin secondary structure at the RNA level. In order to investigate mechanisms by which hairpin-forming repeat RNAs could induce neurodegeneration, we have looked for alterations in gene transcript levels as hallmarks of the cellular response to toxic hairpin repeat RNAs. Three disease-associated repeat sequences--CAG, CUG and AUUCU--were specifically expressed in the neurons of Drosophila and resultant common transcriptional changes assessed by microarray analyses. Transcripts that encode several components of the Akt/Gsk3-ß signalling pathway were altered as a consequence of expression of these repeat RNAs, indicating that this pathway is a component of the neuronal response to these pathogenic RNAs and may represent an important common therapeutic target in this class of diseases.


Assuntos
Proteínas de Drosophila/metabolismo , Expressão Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA/biossíntese , Sequências Repetitivas de Ácido Nucleico , Transdução de Sinais , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Doenças Neurodegenerativas/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA/genética
13.
Nat Rev Neurol ; 19(9): 542-555, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537278

RESUMO

Cerebral palsy is a clinical descriptor covering a diverse group of permanent, non-degenerative disorders of motor function. Around one-third of cases have now been shown to have an underlying genetic aetiology, with the genetic landscape overlapping with those of neurodevelopmental disorders including intellectual disability, epilepsy, speech and language disorders and autism. Here we review the current state of genomic testing in cerebral palsy, highlighting the benefits for personalized medicine and the imperative to consider aetiology during clinical diagnosis. With earlier clinical diagnosis now possible, we emphasize the opportunity for comprehensive and early genomic testing as a crucial component of the routine diagnostic work-up in people with cerebral palsy.


Assuntos
Paralisia Cerebral , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Paralisia Cerebral/diagnóstico , Paralisia Cerebral/genética , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/genética , Causalidade , Paralisia/complicações
14.
Genes (Basel) ; 14(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37628618

RESUMO

Aicardi Syndrome (AIC) is a rare neurodevelopmental disorder recognized by the classical triad of agenesis of the corpus callosum, chorioretinal lacunae and infantile epileptic spasms syndrome. The diagnostic criteria of AIC were revised in 2005 to include additional phenotypes that are frequently observed in this patient group. AIC has been traditionally considered as X-linked and male lethal because it almost exclusively affects females. Despite numerous genetic and genomic investigations on AIC, a unifying X-linked cause has not been identified. Here, we performed exome and genome sequencing of 10 females with AIC or suspected AIC based on current criteria. We identified a unique de novo variant, each in different genes: KMT2B, SLF1, SMARCB1, SZT2 and WNT8B, in five of these females. Notably, genomic analyses of coding and non-coding single nucleotide variants, short tandem repeats and structural variation highlighted a distinct lack of X-linked candidate genes. We assessed the likely pathogenicity of our candidate autosomal variants using the TOPflash assay for WNT8B and morpholino knockdown in zebrafish (Danio rerio) embryos for other candidates. We show expression of Wnt8b and Slf1 are restricted to clinically relevant cortical tissues during mouse development. Our findings suggest that AIC is genetically heterogeneous with implicated genes converging on molecular pathways central to cortical development.


Assuntos
Síndrome de Aicardi , Masculino , Feminino , Animais , Camundongos , Síndrome de Aicardi/genética , Peixe-Zebra/genética , Mapeamento Cromossômico , Genes Ligados ao Cromossomo X/genética , Bioensaio
15.
Adv Exp Med Biol ; 769: 55-77, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23560305

RESUMO

Dynamic mutations are those caused by the expansion of existing polymorphic DNA repeat sequences beyond a copy number threshold. These genetic mutations can give rise to dominant, recessive or X-linked disorders, dependent upon the location of the repeat sequence with respect to the genes that are affected by the expansion. The distinguishing feature of these mutations is their instability, which is a function of the copy number of repeats and can occur in either meiosis or mitosis. For some of the resultant disorders there is a relationship between repeat copy number and age-at-onset and/or severity ofsymptoms ofthe disease. For this reason much effort is now focused on identifying the pathogenic pathways from the mutation to the disease symptoms in the hope of finding means of delaying onset, slowing progression or even preventing symptoms ofthe disease. The growing list ofneurodegenerative and neuromuscular diseases caused by dynamic mutations includes Huntington's disease (HD), spinobulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), a number of spinocerebellar ataxias (SCAs), oculopharyngeal muscular dystrophy (OPMD), myotonic dystrophy Type 1 and 2 (DM1 and 2), Huntington's disease-like 2 (HDL-2), Friedrich's ataxia (FRDA), Fragile X associated tremor ataxia syndrome (FXTAS), Fragile XE (FRAXE) and Fragile XA (FRAXA). This chapter aims to give a brief overview of what is currently known about each disease and the mechanisms underlying pathogenesis.


Assuntos
Doenças Genéticas Inatas/genética , Mutação , Doenças Neurodegenerativas/genética , Sequências de Repetição em Tandem , Idade de Início , Variações do Número de Cópias de DNA , Doenças Genéticas Inatas/fisiopatologia , Humanos , Doenças Neurodegenerativas/fisiopatologia , Conformação de Ácido Nucleico , Peptídeos/genética , Biossíntese de Proteínas
16.
Nat Genet ; 52(10): 1046-1056, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32989326

RESUMO

In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.


Assuntos
Paralisia Cerebral/genética , Proteínas F-Box/genética , Tubulina (Proteína)/genética , Proteínas Supressoras de Tumor/genética , beta Catenina/genética , Animais , Paralisia Cerebral/patologia , Ciclina D/genética , Citoesqueleto/genética , Drosophila/genética , Exoma/genética , Matriz Extracelular/genética , Feminino , Adesões Focais/genética , Predisposição Genética para Doença , Genoma Humano/genética , Humanos , Masculino , Mutação/genética , Neuritos/metabolismo , Neuritos/patologia , Fatores de Risco , Análise de Sequência de DNA , Transdução de Sinais/genética , Sequenciamento do Exoma , Proteína rhoB de Ligação ao GTP/genética
18.
J Child Neurol ; 34(8): 472-476, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30963790

RESUMO

High throughput sequencing is discovering many likely causative genetic variants in individuals with cerebral palsy. Some investigators have suggested that this changes the clinical diagnosis of cerebral palsy and that these individuals should be removed from this diagnostic category. Cerebral palsy is a neurodevelopmental disorder diagnosed on clinical signs, not etiology. All nonprogressive permanent disorders of movement and posture attributed to disturbances that occurred in the developing fetal and infant brain can be described as "cerebral palsy." This definition of cerebral palsy should not be changed, whatever the cause. Reasons include stability, utility and accuracy of cerebral palsy registers, direct access to services, financial and social support specifically offered to families with cerebral palsy, and community understanding of the clinical diagnosis. Other neurodevelopmental disorders, for example, epilepsy, have not changed the diagnosis when genomic causes are found. The clinical diagnosis of cerebral palsy should remain, should prompt appropriate genetic studies and can subsequently be subclassified by etiology.


Assuntos
Paralisia Cerebral/diagnóstico , Paralisia Cerebral/etiologia , Paralisia Cerebral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
20.
Transl Psychiatry ; 8(1): 88, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29681622

RESUMO

Cerebral palsy (CP) is the most common motor disability of childhood. It is characterised by permanent, non-progressive but not unchanging problems with movement, posture and motor function, with a highly heterogeneous clinical spectrum and frequent neurodevelopmental comorbidities. The aetiology of CP is poorly understood, despite recent reports of a genetic contribution in some cases. Here we demonstrate transcriptional dysregulation of trophic signalling pathways in patient-derived cell lines from an unselected cohort of 182 CP-affected individuals using both differential expression analysis and weighted gene co-expression network analysis (WGCNA). We also show that genes differentially expressed in CP, as well as network modules significantly correlated with CP status, are enriched for genes associated with ASD. Combining transcriptome and whole exome sequencing (WES) data for this CP cohort likely resolves an additional 5% of cases separated to the 14% we have previously reported as resolved by WES. Collectively, these results support a convergent molecular abnormality in CP and ASD.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Paralisia Cerebral/genética , Paralisia Cerebral/metabolismo , Transdução de Sinais , Transcriptoma , Linhagem Celular , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Masculino , Glicoproteínas de Membrana , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptor trkB , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA