Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 19(3): 246-254, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29358708

RESUMO

Defective autophagy is linked to diseases such as rheumatoid arthritis, lupus and inflammatory bowel disease (IBD). However, the mechanisms by which autophagy limits inflammation remain poorly understood. Here we found that loss of the autophagy-related gene Atg16l1 promoted accumulation of the adaptor TRIF and downstream signaling in macrophages. Multiplex proteomic profiling identified SQSTM1 and Tax1BP1 as selective autophagy-related receptors that mediated the turnover of TRIF. Knockdown of Tax1bp1 increased production of the cytokines IFN-ß and IL-1ß. Mice lacking Atg16l1 in myeloid cells succumbed to lipopolysaccharide-mediated sepsis but enhanced their clearance of intestinal Salmonella typhimurium in an interferon receptor-dependent manner. Human macrophages with the Crohn's disease-associated Atg16l1 variant T300A exhibited more production of IFN-ß and IL-1ß. An elevated interferon-response gene signature was observed in patients with IBD who were resistant to treatment with an antibody to the cytokine TNF. These findings identify selective autophagy as a key regulator of signaling via the innate immune system.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Autofagia/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Animais , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/imunologia , Doença de Crohn/imunologia , Feminino , Humanos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais/imunologia
3.
Immunity ; 42(2): 321-331, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25680273

RESUMO

T helper 1 (Th1) cell-associated immunity exacerbates ileitis induced by oral Toxoplasma gondii infection. We show here that attenuated ileitis observed in interleukin-22 (IL-22)-deficient mice was associated with reduced production of Th1-cell-promoting IL-18. IL-22 not only augmented the expression of Il18 mRNA and inactive precursor protein (proIL-18) in intestinal epithelial cells after T. gondii or Citrobacter rodentium infection, but also maintained the homeostatic amount of proIL-18 in the ileum. IL-22, however, did not induce the processing to active IL-18, suggesting a two-step regulation of IL-18 in these cells. Although IL-18 exerted pathogenic functions during ileitis triggered by T. gondii, it was required for host defense against C. rodentium. Conversely, IL-18 was required for the expression of IL-22 in innate lymphoid cells (ILCs) upon T. gondii infection. Our results define IL-18 as an IL-22 target gene in epithelial cells and describe a complex mutual regulation of both cytokines during intestinal infection.


Assuntos
Infecções por Enterobacteriaceae/imunologia , Interleucina-18/imunologia , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Toxoplasmose/imunologia , Animais , Células Cultivadas , Citrobacter rodentium/imunologia , Infecções por Enterobacteriaceae/microbiologia , Células Epiteliais/imunologia , Ileíte/imunologia , Ileíte/microbiologia , Ileíte/parasitologia , Íleo/imunologia , Íleo/microbiologia , Íleo/parasitologia , Inflamação/imunologia , Interferon gama/biossíntese , Interleucina-18/biossíntese , Interleucinas/genética , Mucosa Intestinal/microbiologia , Mucosa Intestinal/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Técnicas de Cultura de Órgãos , RNA Mensageiro/biossíntese , Células Th1/imunologia , Toxoplasma/imunologia , Toxoplasmose/parasitologia , Regulação para Cima , Interleucina 22
4.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33446504

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) sustains microglia response to brain injury stimuli including apoptotic cells, myelin damage, and amyloid ß (Aß). Alzheimer's disease (AD) risk is associated with the TREM2R47H variant, which impairs ligand binding and consequently microglia responses to Aß pathology. Here, we show that TREM2 engagement by the mAb hT2AB as surrogate ligand activates microglia in 5XFAD transgenic mice that accumulate Aß and express either the common TREM2 variant (TREM2CV) or TREM2R47H scRNA-seq of microglia from TREM2CV-5XFAD mice treated once with control hIgG1 exposed four distinct trajectories of microglia activation leading to disease-associated (DAM), interferon-responsive (IFN-R), cycling (Cyc-M), and MHC-II expressing (MHC-II) microglia types. All of these were underrepresented in TREM2R47H-5XFAD mice, suggesting that TREM2 ligand engagement is required for microglia activation trajectories. Moreover, Cyc-M and IFN-R microglia were more abundant in female than male TREM2CV-5XFAD mice, likely due to greater Aß load in female 5XFAD mice. A single systemic injection of hT2AB replenished Cyc-M, IFN-R, and MHC-II pools in TREM2R47H-5XFAD mice. In TREM2CV-5XFAD mice, however, hT2AB brought the representation of male Cyc-M and IFN-R microglia closer to that of females, in which these trajectories had already reached maximum capacity. Moreover, hT2AB induced shifts in gene expression patterns in all microglial pools without affecting representation. Repeated treatment with a murinized hT2AB version over 10 d increased chemokines brain content in TREM2R47H-5XFAD mice, consistent with microglia expansion. Thus, the impact of hT2AB on microglia is shaped by the extent of TREM2 endogenous ligand engagement and basal microglia activation.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Glicoproteínas de Membrana/genética , Microglia/metabolismo , Receptores Imunológicos/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Proliferação de Células , Quimiocinas/genética , Quimiocinas/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Cinética , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/classificação , Microglia/efeitos dos fármacos , Microglia/patologia , Mutação , Ligação Proteica , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Fatores Sexuais
5.
Proc Natl Acad Sci U S A ; 117(18): 9952-9963, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32345717

RESUMO

Genetic polymorphisms in the region of the trimeric serine hydrolase high-temperature requirement 1 (HTRA1) are associated with increased risk of age-related macular degeneration (AMD) and disease progression, but the precise biological function of HtrA1 in the eye and its contribution to disease etiologies remain undefined. In this study, we have developed an HtrA1-blocking Fab fragment to test the therapeutic hypothesis that HtrA1 protease activity is involved in the progression of AMD. Next, we generated an activity-based small-molecule probe (ABP) to track target engagement in vivo. In addition, we used N-terminomic proteomic profiling in preclinical models to elucidate the in vivo repertoire of HtrA1-specific substrates, and identified substrates that can serve as robust pharmacodynamic biomarkers of HtrA1 activity. One of these HtrA1 substrates, Dickkopf-related protein 3 (DKK3), was successfully used as a biomarker to demonstrate the inhibition of HtrA1 activity in patients with AMD who were treated with the HtrA1-blocking Fab fragment. This pharmacodynamic biomarker provides important information on HtrA1 activity and pharmacological inhibition within the ocular compartment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Anticorpos Anti-Idiotípicos/farmacologia , Atrofia Geográfica/tratamento farmacológico , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Degeneração Macular/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/isolamento & purificação , Idoso , Animais , Anticorpos Anti-Idiotípicos/genética , Anticorpos Anti-Idiotípicos/imunologia , Biomarcadores/sangue , Progressão da Doença , Feminino , Predisposição Genética para Doença , Genótipo , Atrofia Geográfica/sangue , Atrofia Geográfica/genética , Atrofia Geográfica/imunologia , Serina Peptidase 1 de Requerimento de Alta Temperatura A/antagonistas & inibidores , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Degeneração Macular/sangue , Degeneração Macular/genética , Degeneração Macular/imunologia , Masculino , Polimorfismo de Nucleotídeo Único/genética , Proteoma/genética , Proteoma/imunologia , Ratos , Retina/efeitos dos fármacos , Retina/imunologia , Retina/patologia , Bibliotecas de Moléculas Pequenas/farmacologia
6.
Semin Immunol ; 37: 4-11, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29573978

RESUMO

Rapid elimination of microbes from the bloodstream, along with the ability to mount an adaptive immune response, are essential for optimal host-defense. Kupffer cells are strategically positioned in the liver sinusoids and efficiently capture circulating microbes from the hepatic artery and portal vein, thus preventing bacterial dissemination. In vivo and in vitro studies have probed how complement receptor of the immunoglobulin superfamily (CRIg), also referred to as Z39Ig and V-set and Ig domain-containing 4 (VSIG4), acts as a critical player in pathogen recognition and clearance. While recent data suggested that CRIg may bind bacterial cell wall components directly, the single transmembrane receptor is best known for its interaction with complement C3 opsonization products on the microbial surface. On Kupffer cells, CRIg must capture opsonized microbes against the shear forces of the blood flow. In vivo work reveals how immune adherence (IA), a process in which blood platelets or erythrocytes associate with circulating bacteria, plays a critical role in regulating pathogen capture by CRIg under flow conditions. In addition to its typical innate immune functions, CRIg was shown to directly and indirectly influence adaptive immune responses. Here, we review our current understanding of the diverse roles of CRIg in pathogen elimination, anti-microbial immunity and autoimmunity. In particular, we will explore how, through selective capturing by CRIg, an important balance is achieved between the immunological and clearance functions of liver and spleen.


Assuntos
Infecções Bacterianas/imunologia , Células de Kupffer/fisiologia , Proteínas Opsonizantes/metabolismo , Receptores de Complemento/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Aglutinação , Animais , Complemento C3/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunomodulação , Moléculas com Motivos Associados a Patógenos/imunologia
7.
J Transl Med ; 19(1): 517, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930320

RESUMO

BACKGROUND: Over the past decade, human Interleukin 33 (hIL-33) has emerged as a key contributor to the pathogenesis of numerous inflammatory diseases. Despite the existence of several commercial hIL-33 assays spanning multiple platform technologies, their ability to provide accurate hIL-33 concentration measurements and to differentiate between active (reduced) and inactive (oxidized) hIL-33 in various matrices remains uncertain. This is especially true for lower sample volumes, matrices with low hIL-33 concentrations, and matrices with elevated levels of soluble Interleukin 1 Receptor-Like 1 (sST2), an inactive form of ST2 that competes with membrane bound ST2 for hIL-33 binding. RESULTS: We tested the performance of several commercially available hIL-33 detection assays in various human matrices and found that most of these assays lacked the sensitivity to accurately detect reduced hIL-33 at biologically relevant levels (sub-to-low pg/mL), especially in the presence of human sST2 (hsST2), and/or lacked sufficient target specificity. To address this, we developed and validated a sensitive and specific enzyme-linked immunosorbent assay (ELISA) capable of detecting reduced and total hIL-33 levels even in the presence of high concentrations of sST2. By incorporating the immuno-polymerase chain reaction (iPCR) platform, we further increased the sensitivity of this assay for the reduced form of hIL-33 by ~ 52-fold. Using this hIL-33 iPCR assay, we detected hIL-33 in postmortem human vitreous humor (VH) samples from donors with age-related macular degeneration (AMD) and found significantly increased hIL-33 levels when compared to control individuals. No statistically significant difference was observed in aqueous humor (AH) from AMD donors nor in plasma and nasosorption fluid (NF) from asthma patients compared to control individuals. CONCLUSIONS: Unlike existing commercial hIL-33 assays, our hIL-33 bioassays are highly sensitive and specific and can accurately quantify hIL-33 in various human clinical matrices, including those with high levels of hsST2. Our results provide a proof of concept of the utility of these assays in clinical trials targeting the hIL-33/hST2 pathway.


Assuntos
Asma , Degeneração Macular , Bioensaio , Biomarcadores , Desenvolvimento de Medicamentos , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Interleucina-33 , Sensibilidade e Especificidade
8.
Nature ; 506(7489): 456-62, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24553140

RESUMO

Crohn's disease is a debilitating inflammatory bowel disease (IBD) that can involve the entire digestive tract. A single-nucleotide polymorphism (SNP) encoding a missense variant in the autophagy gene ATG16L1 (rs2241880, Thr300Ala) is strongly associated with the incidence of Crohn's disease. Numerous studies have demonstrated the effect of ATG16L1 deletion or deficiency; however, the molecular consequences of the Thr300Ala (T300A) variant remains unknown. Here we show that amino acids 296-299 constitute a caspase cleavage motif in ATG16L1 and that the T300A variant (T316A in mice) significantly increases ATG16L1 sensitization to caspase-3-mediated processing. We observed that death-receptor activation or starvation-induced metabolic stress in human and murine macrophages increased degradation of the T300A or T316A variants of ATG16L1, respectively, resulting in diminished autophagy. Knock-in mice harbouring the T316A variant showed defective clearance of the ileal pathogen Yersinia enterocolitica and an elevated inflammatory cytokine response. In turn, deletion of the caspase-3-encoding gene, Casp3, or elimination of the caspase cleavage site by site-directed mutagenesis rescued starvation-induced autophagy and pathogen clearance, respectively. These findings demonstrate that caspase 3 activation in the presence of a common risk allele leads to accelerated degradation of ATG16L1, placing cellular stress, apoptotic stimuli and impaired autophagy in a unified pathway that predisposes to Crohn's disease.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 3/metabolismo , Doença de Crohn/genética , Polimorfismo de Nucleotídeo Único/genética , Proteólise , Motivos de Aminoácidos , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/química , Caspase 3/deficiência , Caspase 3/genética , Linhagem Celular , Células Cultivadas , Doença de Crohn/patologia , Citocinas/imunologia , Ativação Enzimática , Feminino , Privação de Alimentos , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Estresse Fisiológico , Yersinia enterocolitica/imunologia
9.
J Am Soc Nephrol ; 29(8): 2053-2059, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29895552

RESUMO

Background C3 glomerulopathy (C3G) is a life-threatening kidney disease caused by dysregulation of the alternative pathway of complement (AP) activation. No approved specific therapy is available for C3G, although an anti-C5 mAb has been used off-label in some patients with C3G, with mixed results. Thus, there is an unmet medical need to develop other inhibitors of complement for C3G.Methods We used a murine model of lethal C3G to test the potential efficacy of an Fc fusion protein of complement receptor of the Ig superfamily (CRIg-Fc) in the treatment of C3G. CRIg-Fc binds C3b and inhibits C3 and C5 convertases of the AP. Mice with mutations in the factor H and properdin genes (FHm/mP-/-) develop early-onset C3G, with AP consumption, high proteinuria, and lethal crescentic GN.Results Treatment of FHm/mP-/- mice with CRIg-Fc, but not a control IgG, inhibited AP activation and diminished the consumption of plasma C3, factor B, and C5. CRIg-Fc-treated FHm/mP-/- mice also had significantly improved survival and reduced proteinuria, hematuria, BUN, glomerular C3 fragment, C9 and fibrin deposition, and GN pathology scores.Conclusions Therapeutics developed on the basis of the mechanism of action of soluble CRIg may be effective for the treatment of C3G and should be explored clinically.


Assuntos
Complemento C3/antagonistas & inibidores , Complemento C3/genética , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/prevenção & controle , Fator 2 de Liberação do Nucleotídeo Guanina/genética , Receptores de Complemento/genética , Análise de Variância , Animais , Biópsia por Agulha , Western Blotting , Ativação do Complemento , Fator B do Complemento/imunologia , Fator B do Complemento/metabolismo , Modelos Animais de Doenças , Glomerulonefrite por IGA/patologia , Imuno-Histoquímica , Testes de Função Renal , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Receptores de Complemento/metabolismo , Taxa de Sobrevida
10.
Retina ; 37(5): 819-835, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27902638

RESUMO

PURPOSE: Geographic atrophy (GA) is an advanced, vision-threatening form of age-related macular degeneration (AMD) affecting approximately five million individuals worldwide. To date, there are no approved therapeutics for GA treatment; however, several are in clinical trials. This review focuses on the pathophysiology of GA, particularly the role of complement cascade dysregulation and emerging therapies targeting the complement cascade. METHODS: Primary literature search on PubMed for GA, complement cascade in age-related macular degeneration. ClinicalTrials.gov was searched for natural history studies in GA and clinical trials of drugs targeting the complement cascade for GA. RESULTS: Cumulative damage to the retina by aging, environmental stress, and other factors triggers inflammation via multiple pathways, including the complement cascade. When regulatory components in these pathways are compromised, as with several GA-linked genetic risk factors in the complement cascade, chronic inflammation can ultimately lead to the retinal cell death characteristic of GA. Complement inhibition has been identified as a key candidate for therapeutic intervention, and drugs targeting the complement pathway are currently in clinical trials. CONCLUSION: The complement cascade is a strategic target for GA therapy. Further research, including on natural history and genetics, is crucial to expand the understanding of GA pathophysiology and identify effective therapeutic targets.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Proteínas do Sistema Complemento/fisiologia , Atrofia Geográfica/fisiopatologia , Degeneração Macular/complicações , Terapia de Alvo Molecular/métodos , Envelhecimento , Ensaios Clínicos como Assunto , Meio Ambiente , Atrofia Geográfica/tratamento farmacológico , Atrofia Geográfica/etiologia , Humanos
11.
Biochem J ; 472(2): 169-81, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26385991

RESUMO

High temperature requirement A1 (HtrA1) is a trypsin-fold serine protease implicated in the progression of age-related macular degeneration (AMD). Our interest in an antibody therapy to neutralize HtrA1 faces the complication that the target adopts a trimeric arrangement, with three active sites in close proximity. In the present study, we describe antibody 94, obtained from a human antibody phage display library, which forms a distinct macromolecular complex with HtrA1 and inhibits the enzymatic activity of recombinant and native HtrA1 forms. Using biochemical methods and negative-staining EM we were able to elucidate the molecular composition of the IgG94 and Fab94 complexes and the associated inhibition mechanism. The 246-kDa complex between the HtrA1 catalytic domain trimer (HtrA1_Cat) and Fab94 had a propeller-like organization with one Fab bound peripherally to each protomer. Low-resolution EM structures and epitope mapping indicated that the antibody binds to the surface-exposed loops B and C of the catalytic domain, suggesting an allosteric inhibition mechanism. The HtrA1_Cat-IgG94 complex (636 kDa) is a cage-like structure with three centrally located IgG94 molecules co-ordinating two HtrA1_Cat trimers and the six active sites pointing into the cavity of the cage. In both complexes, all antigen-recognition regions (paratopes) are found to bind one HtrA1 protomer and all protomers are bound by a paratope, consistent with the complete inhibition of enzyme activity. Therefore, in addition to its potential therapeutic usefulness, antibody 94 establishes a new paradigm of multimeric serine protease inhibition.


Assuntos
Anticorpos Neutralizantes/farmacologia , Complexo Antígeno-Anticorpo/química , Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Serina Endopeptidases/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/metabolismo , Especificidade de Anticorpos , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação de Anticorpos , Domínio Catalítico , Linhagem Celular Tumoral , Mapeamento de Epitopos , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos Fab das Imunoglobulinas/farmacologia , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Imunoglobulina G/farmacologia , Melanoma/enzimologia , Melanoma/metabolismo , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/farmacologia , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Serina Endopeptidases/química , Serina Endopeptidases/genética
12.
J Pharmacol Exp Ther ; 355(2): 288-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26359312

RESUMO

Lampalizumab is an antigen-binding fragment of a humanized monoclonal antibody against complement factor D (CFD), a rate-limiting enzyme in the activation and amplification of the alternative complement pathway (ACP), which is in phase III clinical trials for the treatment of geographic atrophy. Understanding of the pharmacokinetics, pharmacodynamics, and biodistribution of lampalizumab following intravitreal administration in the ocular compartments and systemic circulation is limited but crucial for selecting doses that provide optimal efficacy and safety. Here, we sought to construct a semimechanistic and integrated ocular-systemic pharmacokinetic-pharmacodynamic model of lampalizumab in the cynomolgus monkey to provide a quantitative understanding of the ocular and systemic disposition of lampalizumab and CFD inhibition. The model takes into account target-mediated drug disposition, target turnover, and drug distribution across ocular tissues and systemic circulation. Following intravitreal administration, lampalizumab achieves rapid equilibration across ocular tissues. Lampalizumab ocular elimination is relatively slow, with a τ1/2 of approximately 3 days, whereas systemic elimination is rapid, with a τ1/2 of 0.8 hours. Target-independent linear clearance is predominant in the eye, whereas target-mediated clearance is predominant in the systemic circulation. Systemic CFD synthesis was estimated to be high (7.8 mg/day); however, the amount of CFD entering the eye due to influx from the systemic circulation was small (<10%) compared with the lampalizumab dose and is thus expected to have an insignificant impact on the clinical dose-regimen decision. Our findings support the clinical use of intravitreal lampalizumab to achieve significant ocular ACP inhibition while maintaining low systemic exposure and minimal systemic ACP inhibition.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Fator D do Complemento/antagonistas & inibidores , Atrofia Geográfica/metabolismo , Fragmentos Fab das Imunoglobulinas/farmacologia , Administração Intravenosa , Animais , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Humor Aquoso/metabolismo , Feminino , Atrofia Geográfica/tratamento farmacológico , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Injeções Intravítreas , Macaca fascicularis , Masculino , Modelos Biológicos , Retina/metabolismo , Corpo Vítreo/metabolismo
13.
J Pathol ; 232(2): 151-64, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24105633

RESUMO

As the age of the population increases in many nations, age-related degenerative diseases pose significant socioeconomic challenges. One of the key degenerative diseases that compromise quality of life is age-related macular degeneration (AMD). AMD is a multi-faceted condition that affects the central retina, which ultimately leads to blindness in millions of people worldwide. The pathophysiology and risk factors for AMD are complex, and the symptoms manifest in multiple related but distinct forms. The ability to develop effective treatments for AMD will depend on a thorough understanding of the underlying pathophysiology, risk factors, and driver molecular pathways, as well as the ability to develop useful animal models. This review provides an overview of the aforementioned aspects in AMD.


Assuntos
Descoberta de Drogas , Degeneração Macular/tratamento farmacológico , Retina/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/fisiopatologia , Terapia de Alvo Molecular , Fenótipo , Retina/metabolismo , Retina/patologia , Retina/fisiopatologia
14.
J Pharmacol Exp Ther ; 351(3): 527-37, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25232192

RESUMO

Anti-factor D (AFD; FCFD4514S, lampalizumab) is a humanized IgG Fab fragment directed against factor D (fD), a rate-limiting serine protease in the alternative complement pathway (AP). Evaluation of AFD as a potential intravitreal (IVT) therapeutic for dry age-related macular degeneration patients with geographic atrophy (GA) is ongoing. However, it is unclear whether IVT administration of AFD can affect systemic AP activation and potentially compromise host-immune responses. We characterized the pharmacologic properties of AFD and assessed the effects of AFD administered IVT (2 or 20 mg) or intravenous (0.2, 2, or 20 mg) on systemic complement activity in cynomolgus monkeys. For the IVT groups, serum AP activity was reduced for the 20 mg dose group between 2 and 6 hours postinjection. For the intravenous groups, AFD inhibited systemic AP activity for periods of time ranging from 5 minutes (0.2 mg group) to 3 hours (20 mg group). Interestingly, the concentrations of total serum fD increased up to 10-fold relative to predose levels following administration of AFD. Furthermore, AFD was found to inhibit systemic AP activity only when the molar concentration of AFD exceeded that of fD. This occurred in cynomolgus monkeys at serum AFD levels ≥2 µg/ml, a concentration 8-fold greater than the maximum serum concentration observed following a single 10 mg IVT dose in a clinical investigation in patients with GA. Based on these findings, the low levels of serum AFD resulting from IVT administration of a clinically relevant dose are not expected to appreciably affect systemic AP activity.


Assuntos
Complemento C3a/antagonistas & inibidores , Fator D do Complemento/antagonistas & inibidores , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Degeneração Macular/tratamento farmacológico , Animais , Bovinos , Complemento C3a/imunologia , Fator D do Complemento/imunologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Injeções Intravítreas , Macaca fascicularis , Degeneração Macular/sangue , Degeneração Macular/imunologia , Masculino , Camundongos , Resultado do Tratamento
15.
Ophthalmology ; 121(5): 1079-91, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24433969

RESUMO

In contrast to wet age-related macular degeneration (AMD), where loss of vision is typically acute and treatment leads to a relatively rapid reduction in retinal fluid and subsequent improvements in visual acuity (VA), disease progression and vision loss in geographic atrophy (GA) owing to AMD are gradual processes. Although GA can result in significant visual function deficits in reading, night vision, and dark adaptation, and produce dense, irreversible scotomas in the visual field, the initial decline in VA may be relatively minor if the fovea is spared. Because best-corrected VA does not correlate well with GA lesions or progression, alternative clinical endpoints are being sought. These include reduction in drusen burden, slowing the enlargement rate of GA lesion area, and slowing or eliminating the progression of intermediate to advanced AMD. Among these considerations, slowing the expansion of the GA lesion area seems to be a clinically suitable primary efficacy endpoint. Because GA lesion growth is characterized by loss of photoreceptors, it is considered a surrogate endpoint for vision loss. Detection of GA can be achieved with a number of different imaging techniques, including color fundus photography, fluorescein angiography, fundus autofluorescence (FAF), near-infrared reflectance, and spectral-domain optical coherence tomography. Previous studies have identified predictive characteristics for progression rates including abnormal patterns of FAF in the perilesional retina. Although there is currently no approved or effective treatment to prevent the onset and progression of GA, potential therapies are being evaluated in clinical studies.


Assuntos
Atrofia Geográfica/diagnóstico , Atrofia Geográfica/terapia , Progressão da Doença , Angiofluoresceinografia , Atrofia Geográfica/epidemiologia , Humanos , Fatores de Risco , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia
16.
Retina ; 34(2): 313-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23842100

RESUMO

PURPOSE: Multicenter, open-label, single-dose, dose-escalation Phase Ia study to determine the safety, tolerability, maximum tolerated dose, and immunogenicity of FCFD4514S, an antigen-binding fragment from a humanized monoclonal antibody directed against complement factor D, in patients with geographic atrophy. METHODS: Eighteen patients with geographic atrophy (lesion size: ≥ 0.75 disk areas; best-corrected visual acuity: 20/125-20/400 Snellen equivalent) were sequentially enrolled and received 1 of 6 escalating doses of intravitreal FCFD4514S subject to dose-limiting toxicity criteria. Follow-up assessments (clinical examination, best-corrected visual acuity, intraocular pressure) were conducted at postadministration Days 1, 3, 7, 14, 30, 60, and 90. Serum pharmacokinetics, immunogenicity, and complement activity were also evaluated. RESULTS: All patients completed the study with no reported FCFD4514S-related dose-limiting toxicities or ocular or systemic adverse events. The maximum tolerated dose for this study was 10 mg, the highest dose tested. No antitherapeutic antibody response or adverse effects on systemic complement activity were observed. Time to maximum serum concentration was 1 day to 3 days postdosing; serum terminal half-life was 5.9 days. CONCLUSION: Single-dose intravitreal FCFD4514S administrations were safe and well tolerated and not associated with any study drug-related ocular or systemic adverse events. These data support a multidose safety and tolerability assessment of FCFD4514S in geographic atrophy.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Fator D do Complemento/imunologia , Atrofia Geográfica/metabolismo , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Feminino , Atrofia Geográfica/terapia , Meia-Vida , Humanos , Pressão Intraocular/fisiologia , Injeções Intravítreas , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Acuidade Visual/fisiologia
17.
Nat Commun ; 15(1): 5388, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918376

RESUMO

Heparan sulfate (HS) is degraded in lysosome by a series of glycosidases. Before the glycosidases can act, the terminal glucosamine of HS must be acetylated by the integral lysosomal membrane enzyme heparan-α-glucosaminide N-acetyltransferase (HGSNAT). Mutations of HGSNAT cause HS accumulation and consequently mucopolysaccharidosis IIIC, a devastating lysosomal storage disease characterized by progressive neurological deterioration and early death where no treatment is available. HGSNAT catalyzes a unique transmembrane acetylation reaction where the acetyl group of cytosolic acetyl-CoA is transported across the lysosomal membrane and attached to HS in one reaction. However, the reaction mechanism remains elusive. Here we report six cryo-EM structures of HGSNAT along the reaction pathway. These structures reveal a dimer arrangement and a unique structural fold, which enables the elucidation of the reaction mechanism. We find that a central pore within each monomer traverses the membrane and controls access of cytosolic acetyl-CoA to the active site at its luminal mouth where glucosamine binds. A histidine-aspartic acid catalytic dyad catalyzes the transfer reaction via a ternary complex mechanism. Furthermore, the structures allow the mapping of disease-causing variants and reveal their potential impact on the function, thus creating a framework to guide structure-based drug discovery efforts.


Assuntos
Acetiltransferases , Microscopia Crioeletrônica , Lisossomos , Mucopolissacaridose III , Mucopolissacaridose III/genética , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/enzimologia , Humanos , Lisossomos/metabolismo , Lisossomos/enzimologia , Acetiltransferases/metabolismo , Acetiltransferases/química , Acetiltransferases/genética , Domínio Catalítico , Mutação , Heparitina Sulfato/metabolismo , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Modelos Moleculares , Glucosamina/metabolismo , Glucosamina/química , Acetilação , Membranas Intracelulares/metabolismo
18.
J Biol Chem ; 287(16): 12886-92, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22362762

RESUMO

By virtue of its amplifying property, the alternative complement pathway has been implicated in a number of inflammatory diseases and constitutes an attractive therapeutic target. An anti-factor D Fab fragment (AFD) was generated to inhibit the alternative complement pathway in advanced dry age-related macular degeneration. AFD potently prevented factor D (FD)-mediated proteolytic activation of its macromolecular substrate C3bB, but not proteolysis of a small synthetic substrate, indicating that AFD did not block access of the substrate to the catalytic site. The crystal structures of AFD in complex with human and cynomolgus FD (at 2.4 and 2.3 Å, respectively) revealed the molecular details of the inhibitory mechanism. The structures show that the AFD-binding site includes surface loops of FD that form part of the FD exosite. Thus, AFD inhibits FD proteolytic function by interfering with macromolecular substrate access rather than by inhibiting FD catalysis, providing the molecular basis of AFD-mediated inhibition of a rate-limiting step in the alternative complement pathway.


Assuntos
Anticorpos/imunologia , Fator D do Complemento/química , Fator D do Complemento/imunologia , Via Alternativa do Complemento/imunologia , Animais , Anticorpos/genética , Anticorpos/metabolismo , Especificidade de Anticorpos , Convertases de Complemento C3-C5/metabolismo , Complemento C3b/metabolismo , Fator D do Complemento/genética , Cristalografia , Ésteres/metabolismo , Humanos , Hibridomas , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Macaca fascicularis , Camundongos , Ligação Proteica/imunologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
19.
J Exp Med ; 204(6): 1319-25, 2007 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-17548523

RESUMO

Complement is an important component of the innate and adaptive immune response, yet complement split products generated through activation of each of the three complement pathways (classical, alternative, and lectin) can cause inflammation and tissue destruction. Previous studies have shown that complement activation through the alternative, but not classical, pathway is required to initiate antibody-induced arthritis in mice, but it is unclear if the alternative pathway (AP) plays a role in established disease. Previously, we have shown that human complement receptor of the immunoglobulin superfamily (CRIg) is a selective inhibitor of the AP of complement. Here, we present the crystal structure of murine CRIg and, using mutants, provide evidence that the structural requirements for inhibition of the AP are conserved in human and mouse. A soluble form of CRIg reversed inflammation and bone loss in two experimental models of arthritis by inhibiting the AP of complement in the joint. Our data indicate that the AP of complement is not only required for disease induction, but also disease progression. The extracellular domain of CRIg thus provides a novel tool to study the effects of inhibiting the AP of complement in established disease and constitutes a promising therapeutic with selectivity for a single complement pathway.


Assuntos
Artrite Experimental/tratamento farmacológico , Reabsorção Óssea/tratamento farmacológico , Modelos Moleculares , Receptores de Complemento/genética , Animais , Artrite Experimental/complicações , Reabsorção Óssea/etiologia , Inativadores do Complemento , Cristalização , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Camundongos , Receptores de Complemento/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA