Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Electrophoresis ; 45(9-10): 916-932, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38419135

RESUMO

Biological material is routinely collected at crime scenes and from exhibits and is a key type of evidence during criminal investigations. Improvements in DNA technologies allow collection and profiling of trace samples, comprised of few cells, significantly expanding the types of exhibits targeted for DNA analysis to include touched surfaces. However, success rates from trace and touch DNA samples tend to be poorer compared to other biological materials such as blood. Simultaneously, there have been recent advances in the utility of environmental DNA collection (eDNA) in identification and tracking of different biological organisms and species from bacteria to naked mole rats in different environments, including, soil, ice, snow, air and aquatic. This paper examines the emerging methods and research into eDNA collection, with a special emphasis on the potential forensic applications of human DNA collection from air including challenges and further studies required to progress implementation.


Assuntos
DNA Ambiental , Animais , Humanos , Ar/análise , DNA Ambiental/análise , Ciências Forenses/métodos , Manejo de Espécimes/métodos
2.
Electrophoresis ; 45(9-10): 933-947, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38416600

RESUMO

Biological material is routinely collected at crime scenes and from exhibits and is a key type of evidence during criminal investigations. Touch or trace DNA samples from surfaces and objects deemed to have been contacted are frequently collected. However, a person of interest may not leave any traces on contacted surfaces, for example, if wearing gloves. A novel means of sampling human DNA from air offers additional avenues for DNA collection. In the present study, we report on the results of a pilot study into the prevalence and persistence of human DNA in the air. The first aspect of the pilot study investigates air conditioner units that circulate air around a room, by sampling units located in four offices and four houses at different time frames post-cleaning. The second aspect investigates the ability to collect human DNA from the air in rooms, with and without people, for different periods of time and with different types of collection filters. Results of this pilot study show that human DNA can be collected on air conditioner unit surfaces and from the air, with air samples representing the more recent occupation while air conditioner units showing historic use of the room.


Assuntos
DNA , Manejo de Espécimes , Humanos , DNA/análise , Projetos Piloto , Manejo de Espécimes/métodos , Ar/análise , Ar Condicionado
3.
Forensic Sci Int Genet ; 68: 102977, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000160

RESUMO

When sampling an item or surface for DNA originating from an action of interest, one is likely to collect DNA unrelated to the action of interest (background DNA). While adding to the complexity of a generated DNA profile, background DNA has been shown to aid in resolving the genotypes of contributors in a targeted sample, and where references of donors to the background DNA are not available, strengthen the LR supporting a person of interest contributing to the targeted sample. This is possible thanks to advances in probabilistic genotyping, where forensic labs are able to deconvolute complex DNA profiles to obtain lists of genotypes and their associated weights. Coupled with DBLR™, one can then compare multiple evidentiary profiles to each other to determine the contribution of common, but unknown, contributors. Here, we consider factors associated with taking background samples and whether one should collect multiple background samples that all relate to a single target sample, or if one should collect larger background samples rather than smaller samples. Background samples consisted of DNA accumulated on the items primarily by one or both occupants of a single household, while targeted samples were generated from touch deposits, or saliva deposits that had been left to air dry. Samples were collected from areas of various sizes, consisting of only the background, the target and the background directly beneath it, and the target and additional surrounding background. A broad range of DNA quantities were recovered, with larger background samples (400 cm2) yielding significantly more DNA than smaller background samples (30 cm2). Significant differences in DNA quantities between target samples were not observed. Generated DNA profiles were interpreted using STRmix™ and DBLR™, and where there was support for a common donor between the background and target sample, pairwise comparisons were performed to observe the effect on the LR supporting the target DNA donor contributing to the targeted sample when conditioning on one (or two) common donor between the targeted sample and 1-8 background samples. Multiple background samples gave significantly higher LRs compared to a single background sample, the larger sampled background area resulted in larger LR gains than the smaller areas, and four or more background samples reduced LR variability considerably. Here we provide recommendations for the minimum and ideal number of additional background samples that should be collected, and that several smaller samples may be more beneficial than a single larger sample.


Assuntos
Impressões Digitais de DNA , Repetições de Microssatélites , Humanos , Funções Verossimilhança , Impressões Digitais de DNA/métodos , Genótipo , DNA/genética
4.
Forensic Sci Int ; 361: 112153, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39029141

RESUMO

This study aimed to identify if biological material could be detected on the opposite side to deposition on fabric by commonly used presumptive and/or secondary tests. Additionally, this study aimed to ascertain if there is a difference in the DNA quantity and quality from samples obtained from both sides of the same substrate: cotton, polyester, denim, or combined viscose and polyester swatches. Blood, semen, or saliva (25 µL) was deposited on one side of 5 replicates of each fabric type and left for 24 h. Blood swatches were tested using Hemastix® and the ABACard® HemaTrace® immunoassay, semen swatches were tested using acid phosphatase (AP) reagent, the ABACard® p30® immunoassay and hematoxylin and eosin staining, and saliva swatches were tested using Phadebas® paper and the RSID-Saliva™ immunoassay. Both sides of each swatch were separately wet/dry swabbed and subjected to DNA analysis. Blood was able to be detected on the underside of all fabrics using both tests. Semen was able to be detected on the underside of swatches using the presumptive AP test but not p30®, and sperm was rarely observed. Saliva was able to be detected by RSID-Saliva™ but not Phadebas® paper when the underside of swatches were tested. Across all biological materials, DNA was able to be recovered from the top side of all 60 swatches. For the underside, DNA was able to be recovered from 54 swatches. Of the 6 swatches that DNA was unable to be recovered from, one sample was from semen and the rest were from saliva. This study has demonstrated that DNA and components of interest in forensically relevant biological material can be recovered from the opposite side to where it was originally deposited, and that observing biological material and/or DNA on one side of fabric does not definitively indicate direct deposition on that side.


Assuntos
Impressões Digitais de DNA , DNA , Saliva , Sêmen , Têxteis , Saliva/química , Sêmen/química , Humanos , Masculino , Projetos Piloto , DNA/análise , Imunoensaio , Sangue , Manchas de Sangue , Fosfatase Ácida/análise , Vestuário
5.
Forensic Sci Int ; 356: 111951, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301431

RESUMO

This study assessed the level of nucleic acid persistence on the substrate pre-, and post-swabbing, in order to assess whether biological materials (touch, saliva, semen, and blood) are collected differently depending on the substrate characteristics. A total of 48 samples per deposit and substrate variety (n = 384) were assessed by tracking the persistence of nucleic acid using Diamond™ Nucleic Acid Dye (DD) staining and Polilight photography. The number of DD nucleic acid fluorescent complexes formed post-staining were counted (fluorescent count) and in conjunction with the fluorescence signal intensity (DD nucleic acid complex accumulation) used to estimate the level of nucleic acid persistence on substrates. Touch deposits have shown to be the most persistent deposit with strong adhesion capabilities on both substrate verities. Saliva displayed a higher persistence than semen and/or blood. Semen displayed a high collection efficiency as well as a high fluorescence signal intensity. Blood displayed a low persistence on both substrates with a superior collection efficiency that may also indicate a higher probability to become dislodged from surfaces given a particular activity. Our research has shown that the persistence and recovery of biological deposits is not only measurable but more importantly, may have the potential to be estimated, as such, may build an understanding that can provide valuable guidance for collection efficiency evaluations, and the assessing of the probability of particular profiles, given alternate propositions of means of transfer occurring.


Assuntos
Impressões Digitais de DNA , Ácidos Nucleicos , DNA , Corantes , Tato
6.
J Forensic Sci ; 69(3): 1061-1068, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38415957

RESUMO

An investigation into whether the addition of a commonly used anti-coagulant agent like ethylenediaminetetraacetic acid (EDTA) has an impact on the adhesion potential of blood to non-porous substrates was conducted. Two non-porous substrates (aluminum and polypropylene) exhibiting six different surface roughness categories (R1-R6) were used as test substrates upon which either whole blood or blood treated with EDTA was deposited. Samples were exposed to different drying periods (24 hours, 48 hours, and 1 week) before undergoing a tapping agitation experiment in order to evaluate the adhesion to the surface. Clear differences in adhesion potential were observed between whole blood and blood treated with EDTA. Blood treated with EDTA displayed a stronger adhesion strength to aluminum after a drying time of 24 h pre-agitation, while whole blood presented with a stronger adhesion strength at the drying time of 48 h and 1 week. Both EDTA-treated and EDTA-untreated blood was shown to dislodge less easily on polypropylene with the only difference observed on smooth surfaces (0.51-1.50 µm surface roughness). Thus, when conducting transfer studies using smooth hydrophobic substrates like polypropylene or considering the likelihood of transfer given specific case scenarios, differences in adhesion strength of blood due to hydrophobic substrate characteristics and a decreased surface area need to be considered. Overall, whole blood displayed a better adhesion strength to aluminum, emphasizing that indirect transfer probability experiments using EDTA blood on substrates like aluminum should take an increased dislodgment tendency into account in their transfer estimations.


Assuntos
Alumínio , Anticoagulantes , Ácido Edético , Polipropilenos , Propriedades de Superfície , Ácido Edético/farmacologia , Humanos , Anticoagulantes/farmacologia , Adesividade , Manchas de Sangue , Sangue , Interações Hidrofóbicas e Hidrofílicas
7.
Forensic Sci Int ; 354: 111914, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154427

RESUMO

A comprehensive investigation into the impact of the physical and chemical variables of a substrate on the deposition was conducted to aid in the estimation of the subsequent transfer probabilities of blood and semen. The study focussed on surface roughness, topography, surface free energy (SFE), wettability, and the capacity for protein adsorption. Conjointly, evaluations of the physical and chemical characteristics of blood and seminal deposits were conducted, to assess the fluid dynamics of these non-Newtonian fluids and their adhesion potential to aluminium and polypropylene. A linear range of surface roughness parameters (0.5 - 3.5 µm) were assessed for their impact on the deposit deposition spread and adhesion height, to gather insight into the change in fluid dynamics of non-Newtonian fluids. Blood has shown to produce a uniform adhesion coverage on aluminium across all roughness categories while blood deposited on polypropylene exhibited a strong hydrophobic response from a surface roughness of 2.0 µm and beyond. Interestingly, the deposition height of blood resulted in near identical values, whether deposited onto the hydrophobic polypropylene or the hydrophilic aluminium substrate, illustrating the potential influence of a heightened fibrinogen adsorption effect. Semen deposited on aluminium resulted in concentrated localised deposition regions after reaching a surface roughness of 2.0 µm, highlighting the development of crystal formations afforded by the sodium ion concentration in the seminal fluid. The semen deposited on polypropylene conformed to the substrate contours producing a deposition film that was smoother than the substrate itself, underlining the effects of thixotropic fluid dynamics. Variables identified here establish the complexity observed for non-Newtonian fluids, and the effect protein adsorption may have on the deposition behaviour of blood and seminal deposits and inform questions in relation to the adhesion strength of said deposits and their ability to dislodge (becoming detached upon the application of an external force) from the substrate surface during a potential transfer event.


Assuntos
Líquidos Corporais , Polipropilenos , Propriedades de Superfície , Polipropilenos/análise , Alumínio/análise , Molhabilidade , Líquidos Corporais/química
8.
Forensic Sci Int ; 360: 112046, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718526

RESUMO

Research into the recovery of DNA from illicit drug samples has shown it is possible to get forensically useful profiles from such substrates. However, it is not yet known if the different physical states that drugs can be found in influences the quantity and quality of DNA that can be recovered or what is the best sampling method to adopt for powdered samples. This research used acetaminophen in four different states - large crystalline, powder, in solution, or residue - to determine the efficacy of current DNA technology in recovery and analysis of the resulting sample. Five replicates of each were prepared. Human blood was deposited on or mixed with the drug and left for 1 hour. The surface of the drug was sampled by wet/dry swabbing (where appropriate), or the entire sample was deposited in a tube, and the DNA then extracted using DNA-IQ™. The amount of DNA recovered (ng), degradation index, number of PCR cycles (Ct) required for the IPC to reach threshold, number of alleles in the DNA profile and average peak height (APH) were assessed. All samples, irrespective of the physical state they were collected from, returned full DNA profiles that corresponded to the DNA profile of the blood donor, with no degradation or inhibition detected. It was also found the wet/dry swabbing method returned higher levels of DNA than inclusion of the entire sample into the tube for powdered acetaminophen and the appropriate method to use will be dependent on casework circumstances. The findings of this research further develops our understanding of the recovery of DNA from drugs, and supports the need for further investigation to understand under what conditions DNA can be recovered from illicit substances.


Assuntos
Acetaminofen , Impressões Digitais de DNA , DNA , Reação em Cadeia da Polimerase , Manejo de Espécimes , Acetaminofen/sangue , Humanos , DNA/isolamento & purificação , Manejo de Espécimes/métodos , Impressões Digitais de DNA/métodos , Pós , Repetições de Microssatélites , Analgésicos não Narcóticos , Degradação Necrótica do DNA
9.
Forensic Sci Int Genet ; 73: 103101, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096604

RESUMO

The sensitivity of DNA analysis has progressed to the point that trace levels of DNA, originating from only a few cells, can generate informative profiles. This means that virtually any item or surface can be sampled with a reasonable chance of obtaining a DNA profile. As the presence of DNA does not suggest how it was deposited, questions are often raised as to how the DNA came to be at a particular location and the activity that led to its deposition. Therefore, understanding different modes of DNA deposition, reflective of realistic forensic casework situations, is critical for proper evaluation of DNA results in court. This study aimed to follow the movements of DNA to and from individuals and common household surfaces in a residential premises, while socially interacting. This took place over an hour and involved four participants, with known shedder status, designated as visitors (a male and a female) and hosts (a male and a female), who engaged in the activity of playing a board game while being served food. During the study, the participants were instructed to use the toilet on a single occasion to assess the transfer of DNA to new and unused underwear that was provided. All contacts made by the participants in the dining room and kitchen were video recorded to follow the movements of DNA. Samples were collected based on the history of contact, which included hands, fingernails and penile swabs. Direct contacts resulted in detectable transfer (LR > 1) in 87 % (87/100) of the non-intimate samples and clothing. For surfaces touched by multiple participants, DNA from the person who made the last contact was not always detectable. The duration and number of contacts did not significantly affect the detection of the person contacting the item. On the other hand, presence of background DNA and participant's shedder status appear to play an important role. Further, unknown contributors were detected in the majority of samples. Finally, indirect transfer was observed on a number of occasions including co-habiting partners of guests who were not present at the study location. The results of this study may assist with decision making for exhibit selection or targeting areas for sampling within the home environment. Our findings can also be used in conjunction with previous literature to develop activity-level evaluations in such situations where the source of the DNA is conceded, but the mode of deposition is disputed.

10.
Forensic Sci Int ; 361: 112085, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850619

RESUMO

Previous studies have shown that environmental DNA (eDNA) from human sources can be recovered from natural bodies of water, and the generation of DNA profiles from such environmental samples may assist in forensic investigations. However, fundamental knowledge gaps exist around the factors influencing the probability of detecting human eDNA and the design of optimal sampling protocols. One of these is understanding the particle sizes eDNA signals are most strongly associated with and the most appropriate filter size needed for efficiently capturing eDNA particles. This study assessed the amount of mitochondrial eDNA associated with different particle sizes from human blood and skin cells recovered from freshwater samples. Samples (300 mL) were taken from experimental 10 L tanks of freshwater spiked with 50 µL of human blood or skin cells deposited by vigorously rubbing hands together for two minutes in freshwater. Subsamples were collected by passing 250 mL of experimental water sample through six different filter pore sizes (from 0.1 to 8 µm). This process was repeated at four time intervals after spiking over 72 hours to assess if the particle size of the amount of eDNA recovered changes as the eDNA degrades. Using a human-specific quantitative polymerase chain reaction (qPCR) assay targeting the HV1 mitochondrial gene region, the total amount of mitochondrial eDNA associated with different particle size fractions was determined. In the case of human blood, at 0 h, the 0.45 µm filter pore size captured the greatest amount of mitochondrial eDNA, capturing 42 % of the eDNA detected. The pattern then changed after 48 h, with the 5 µm filter pore size capturing the greatest amount of eDNA (67 %), and 81 % of eDNA at 72 h. Notably, a ten-fold dilution proved to be a valuable strategy for enhancing eDNA recovery from the 8 µm filter at all time points, primarily due to the PCR inhibition observed in hemoglobin. For human skin cells, the greatest amounts of eDNA were recovered from the 8 µm filter pore size and were consistent through time (capturing 37 %, 56 %, and 88 % of eDNA at 0 hours, 48 hours, and 72 hours respectively). There is a clear variation in the amount of eDNA recovered between different cell types, and in some forensic scenarios, there is likely to be a mix of cell types present. These results suggest it would be best to use a 5 µm filter pore size to capture human blood and an 8 µm filter pore size to capture human skin cells to maximize DNA recovery from freshwater samples. Depending on the cell type contributing to the eDNA, a combination of different filter pore sizes may be employed to optimize the recovery of human DNA from water samples. This study provides the groundwork for optimizing a strategy for the efficient recovery of human eDNA from aquatic environments, paving the way for its broader application in forensic and environmental sciences.


Assuntos
DNA Ambiental , DNA Mitocondrial , Água Doce , Tamanho da Partícula , Humanos , Pele/química , Manejo de Espécimes/métodos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase , Impressões Digitais de DNA/métodos , Filtração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA