Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(17): e100, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31318974

RESUMO

The majority of the proteins involved in processing of DNA double-strand breaks (DSBs) accumulate at the damage sites. Real-time imaging and analysis of these processes, triggered by the so-called microirradiation using UV lasers or heavy particle beams, yielded valuable insights into the underlying DSB repair mechanisms. To study the temporal organization of DSB repair responses triggered by a more clinically-relevant DNA damaging agent, we developed a system coined X-ray multi-microbeam microscope (XM3), capable of simultaneous high dose-rate (micro)irradiation of large numbers of cells with ultra-soft X-rays and imaging of the ensuing cellular responses. Using this setup, we analyzed the changes in real-time kinetics of MRE11, MDC1, RNF8, RNF168 and 53BP1-proteins involved in the signaling axis of mammalian DSB repair-in response to X-ray and UV laser-induced DNA damage, in non-cancerous and cancer cells and in the presence or absence of a photosensitizer. Our results reveal, for the first time, the kinetics of DSB signaling triggered by X-ray microirradiation and establish XM3 as a powerful platform for real-time analysis of cellular DSB repair responses.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Imagem com Lapso de Tempo/métodos , Raios X , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Humanos , Proteína Homóloga a MRE11 , Microscopia Eletrônica de Varredura , Osteossarcoma/metabolismo , Epitélio Pigmentado Ocular/metabolismo , Transdução de Sinais , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Raios Ultravioleta
2.
Nat Methods ; 5(3): 261-6, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18309310

RESUMO

Understanding how cells maintain genome integrity when challenged with DNA double-strand breaks (DSBs) is of major importance, particularly since the discovery of multiple links of DSBs with genome instability and cancer-predisposition disorders. Ionizing radiation is the agent of choice to produce DSBs in cells; however, targeting DSBs and monitoring changes in their position over time can be difficult. Here we describe a procedure for induction of easily recognizable linear arrays of DSBs in nuclei of adherent eukaryotic cells by exposing the cells to alpha particles from a small Americium source (Box 1). Each alpha particle traversing the cell nucleus induces a linear array of DSBs, typically 10-20 DSBs per 10 mum track length. Because alpha particles cannot penetrate cell-culture plastic or coverslips, it is necessary to irradiate cells through a Mylar membrane. We describe setup and irradiation procedures for two types of experiments: immunodetection of DSB response proteins in fixed cells grown in Mylar-bottom culture dishes (Option A) and detection of fluorescently labeled DSB-response proteins in living cells irradiated through a Mylar membrane placed on top of the cells (Option B). Using immunodetection, recruitment of repair proteins to individual DSB sites as early as 30 s after irradiation can be detected. Furthermore, combined with fluorescence live-cell microscopy of fluorescently tagged DSB-response proteins, this technique allows spatiotemporal analysis of the DSB repair response in living cells. Although the procedures might seem a bit intimidating, in our experience, once the source and the setup are ready, it is easy to obtain results. Because the live-cell procedure requires more hands-on experience, we recommend starting with the fixed-cell application.


Assuntos
Partículas alfa , Dano ao DNA , DNA/efeitos da radiação , Amerício , Linhagem Celular Tumoral , Humanos
3.
Eur Biophys J ; 38(6): 721-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19495740

RESUMO

Localized induction of DNA damage is a valuable tool for studying cellular DNA damage responses. In recent decades, methods have been developed to generate DNA damage using radiation of various types, including photons and charged particles. Here we describe a simple ultrasoft X-ray multi-microbeam system for high dose-rate, localized induction of DNA strand breaks in cells at spatially and geometrically adjustable sites. Our system can be combined with fixed- and live-cell microscopy to study responses of cells to DNA damage.


Assuntos
Dano ao DNA/efeitos da radiação , Reparo do DNA , DNA/efeitos da radiação , Raios X , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde , Humanos , Imuno-Histoquímica/métodos , Microscopia de Fluorescência/métodos
4.
J Histochem Cytochem ; 54(1): 47-52, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16046670

RESUMO

Since the introduction of cyano-ditolyl-tetrazolium chloride (CTC), a tetrazolium salt that gives rise to a fluorescent formazan after reduction, it has been applied to quantify activity of dehydrogenases in individual cells using flow cytometry. Confocal laser scanning microscopy (CLSM) showed that the fluorescent formazan was exclusively localized at the surface of individual cells and not at intracellular sites of enzyme activity. In the present study, the technique has been optimized to localize activity of glucose-6-phosphate dehydrogenase (G6PD) intracellularly in individual cells. Activity was demonstrated in cultured fibrosarcoma cells in different stages of the cell cycle. Cells were incubated for the detection of G6PD activity using a medium containing 6% (w/v) polyvinyl alcohol, 5 mM CTC, magnesium chloride, sodium azide, the electron carrier methoxyphenazine methosulphate, NADP, and glucose-6-phosphate. Before incubation, cells were permeabilized with 0.025% glutaraldehyde. Fluorescent formazan was localized exclusively in the cytoplasm of fibrosarcoma cells. The amount of fluorescent formazan in cells increased linearly with incubation time when measured with flow cytometry and CLSM. When combining the Hoechst staining for DNA with the CTC method for the demonstration of G6PD activity, flow cytometry showed that G6PD activity of cells in S phase and G2/M phase is 27 +/- 4% and 43 +/- 4% higher, respectively, than that of cells in G1 phase. CLSM revealed that cells in all phases of mitosis as well as during apoptosis contained considerably lower G6PD activity than cells in interphase. It is concluded that posttranslational regulation of G6PD is responsible for this cell cycle-dependent activity.


Assuntos
Ciclo Celular , Corantes Fluorescentes , Glucosefosfato Desidrogenase/metabolismo , Sais de Tetrazólio , Animais , Linhagem Celular Tumoral , Meios de Cultura , Citometria de Fluxo , Humanos , Microscopia Confocal , Oxirredução , Ratos
5.
Methods Mol Biol ; 463: 309-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18951175

RESUMO

DNA double-strand breaks (DSBs) are among the most dangerous types of DNA damage. Unrepaired, DSBs may lead to cell death, and when misrejoined, they can result in potentially carcinogenic chromosome rearrangements. The induction of DSBs and their repair take place in a chromatin microenvironment. Therefore, understanding and describing the dynamics of DSB-containing chromatin is of crucial importance for understanding interactions among DSBs and their repair. Recent developments have made it possible to study ionizing radiation-induced foci of DSB repair proteins in vivo. In this chapter, we describe techniques that can be applied to visualize and analyze the spatio-temporal dynamics of DSB-containing chromatin domains in mammalian cell nuclei. Analogous procedures may also be applied to the analysis of mobility of other intranuclear structures in living cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Técnicas Genéticas , Microscopia de Contraste de Fase/métodos , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromossomos/ultraestrutura , Dano ao DNA , Reparo do DNA , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mamíferos , Fatores de Tempo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
6.
Science ; 303(5654): 92-5, 2004 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-14704429

RESUMO

Interactions between ends from different DNA double-strand breaks (DSBs) can produce tumorigenic chromosome translocations. Two theories for the juxta-position of DSBs in translocations, the static "contact-first" and the dynamic "breakage-first" theory, differ fundamentally in their requirement for DSB mobility. To determine whether or not DSB-containing chromosome domains are mobile and can interact, we introduced linear tracks of DSBs in nuclei. We observed changes in track morphology within minutes after DSB induction, indicating movement of the domains. In a subpopulation of cells, the domains clustered. Juxtaposition of different DSB-containing chromosome domains through clustering, which was most extensive in G1 phase cells, suggests an adhesion process in which we implicate the Mre11 complex. Our results support the breakage-first theory to explain the origin of chromosomal translocations.


Assuntos
Quebra Cromossômica , Cromossomos Humanos/metabolismo , Dano ao DNA , DNA/metabolismo , Histonas/metabolismo , Partículas alfa , Animais , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Células CHO , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Cromossomos de Mamíferos/metabolismo , Cricetinae , Cricetulus , DNA/efeitos da radiação , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Fase G1 , Fase G2 , Células HeLa , Humanos , Proteína Homóloga a MRE11 , Fosforilação , Rad51 Recombinase , Fase S , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA