Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 26(4): 417-26, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26916109

RESUMO

Although previous studies have documented a bottleneck in the transmission of mtDNA genomes from mothers to offspring, several aspects remain unclear, including the size and nature of the bottleneck. Here, we analyze the dynamics of mtDNA heteroplasmy transmission in the Genomes of the Netherlands (GoNL) data, which consists of complete mtDNA genome sequences from 228 trios, eight dizygotic (DZ) twin quartets, and 10 monozygotic (MZ) twin quartets. Using a minor allele frequency (MAF) threshold of 2%, we identified 189 heteroplasmies in the trio mothers, of which 59% were transmitted to offspring, and 159 heteroplasmies in the trio offspring, of which 70% were inherited from the mothers. MZ twin pairs exhibited greater similarity in MAF at heteroplasmic sites than DZ twin pairs, suggesting that the heteroplasmy MAF in the oocyte is the major determinant of the heteroplasmy MAF in the offspring. We used a likelihood method to estimate the effective number of mtDNA genomes transmitted to offspring under different bottleneck models; a variable bottleneck size model provided the best fit to the data, with an estimated mean of nine individual mtDNA genomes transmitted. We also found evidence for negative selection during transmission against novel heteroplasmies (in which the minor allele has never been observed in polymorphism data). These novel heteroplasmies are enhanced for tRNA and rRNA genes, and mutations associated with mtDNA diseases frequently occur in these genes. Our results thus suggest that the female germ line is able to recognize and select against deleterious heteroplasmies.


Assuntos
DNA Mitocondrial , Família , Heterogeneidade Genética , Padrões de Herança , População Branca/genética , Alelos , Feminino , Frequência do Gene , Humanos , Masculino , Modelos Genéticos , Modelos Estatísticos , Mutação , Países Baixos , Polimorfismo Genético , Seleção Genética , Gêmeos
2.
Int J Legal Med ; 132(1): 137-138, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28516222

RESUMO

Pakistan harbors 16 major ethnic groups including Punjabis (56% of total population) and Kashmiri (6% of total population). Here, we report data of 17 Y-chromosomal short tandem repeats (Y-STRs) genotyped with the AmpFlSTR Y-filer™ PCR Amplification kit in 94 Punjabis and 101 Kashmiris. The estimated haplotype diversity was higher in Punjabis (0.996) than that in Kashmiris (0.983). Furthermore, we performed population genetic analyses by including data from six other Pakistani groups. The presented haplotype data were recently included in the Y-Chromosome Haplotype Reference Database (YHRD) for future forensic and other usage.


Assuntos
Cromossomos Humanos Y , Etnicidade/genética , Genética Populacional , Repetições de Microssatélites , Impressões Digitais de DNA , Haplótipos , Humanos , Masculino , Paquistão , Reação em Cadeia da Polimerase
3.
J Hum Genet ; 62(3): 343-353, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27904152

RESUMO

Aboriginal Australians are one of the more poorly studied populations from the standpoint of human evolution and genetic diversity. Thus, to investigate their genetic diversity, the possible date of their ancestors' arrival and their relationships with neighboring populations, we analyzed mitochondrial DNA (mtDNA) diversity in a large sample of Aboriginal Australians. Selected mtDNA single-nucleotide polymorphisms and the hypervariable segment haplotypes were analyzed in 594 Aboriginal Australians drawn from locations across the continent, chiefly from regions not previously sampled. Most (~78%) samples could be assigned to mtDNA haplogroups indigenous to Australia. The indigenous haplogroups were all ancient (with estimated ages >40 000 years) and geographically widespread across the continent. The most common haplogroup was P (44%) followed by S (23%) and M42a (9%). There was some geographic structure at the haplotype level. The estimated ages of the indigenous haplogroups range from 39 000 to 55 000 years, dates that fit well with the estimated date of colonization of Australia based on archeological evidence (~47 000 years ago). The distribution of mtDNA haplogroups in Australia and New Guinea supports the hypothesis that the ancestors of Aboriginal Australians entered Sahul through at least two entry points. The mtDNA data give no support to the hypothesis of secondary gene flow into Australia during the Holocene, but instead suggest long-term isolation of the continent.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Filogenia , Evolução Biológica , DNA Mitocondrial/história , Feminino , Fluxo Gênico , Haplótipos , História do Século XXI , História Antiga , Humanos , Masculino , Havaiano Nativo ou Outro Ilhéu do Pacífico/história , Oceania , Paleontologia , Filogeografia , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo
4.
Hum Mutat ; 37(6): 540-548, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26919060

RESUMO

MSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes, genes, and variants. A central Web portal (https://mseqdr.org) integrates community knowledge from expert-curated databases with genomic and phenotype data shared by clinicians and researchers. MSeqDR also functions as a centralized application server for Web-based tools to analyze data across both mitochondrial and nuclear DNA, including investigator-driven whole exome or genome dataset analyses through MSeqDR-Genesis. MSeqDR-GBrowse genome browser supports interactive genomic data exploration and visualization with custom tracks relevant to mtDNA variation and mitochondrial disease. MSeqDR-LSDB is a locus-specific database that currently manages 178 mitochondrial diseases, 1,363 genes associated with mitochondrial biology or disease, and 3,711 pathogenic variants in those genes. MSeqDR Disease Portal allows hierarchical tree-style disease exploration to evaluate their unique descriptions, phenotypes, and causative variants. Automated genomic data submission tools are provided that capture ClinVar compliant variant annotations. PhenoTips will be used for phenotypic data submission on deidentified patients using human phenotype ontology terminology. The development of a dynamic informed patient consent process to guide data access is underway to realize the full potential of these resources.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Doenças Mitocondriais/genética , Variação Genética , Genoma Mitocondrial , Genômica , Humanos , Disseminação de Informação , Interface Usuário-Computador , Navegador
5.
Bioinformatics ; 31(8): 1310-2, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25505086

RESUMO

MOTIVATION: All current mitochondrial haplogroup classification tools require variants to be detected from an alignment with the reference sequence and to be properly named according to the canonical nomenclature standards for describing mitochondrial variants, before they can be compared with the haplogroup determining polymorphisms. With the emergence of high-throughput sequencing technologies and hence greater availability of mitochondrial genome sequences, there is a strong need for an automated haplogroup classification tool that is alignment-free and agnostic to reference sequence. RESULTS: We have developed a novel mitochondrial genome haplogroup-defining algorithm using a k-mer approach namely Phy-Mer. Phy-Mer performs equally well as the leading haplogroup classifier, HaploGrep, while avoiding the errors that may occur when preparing variants to required formats and notations. We have further expanded Phy-Mer functionality such that next-generation sequencing data can be used directly as input. AVAILABILITY AND IMPLEMENTATION: Phy-Mer is publicly available under the GNU Affero General Public License v3.0 on GitHub (https://github.com/danielnavarrogomez/phy-mer). CONTACT: Xiaowu_Gai@meei.harvard.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , DNA Mitocondrial/genética , Variação Genética/genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Humanos , Software
6.
Am J Phys Anthropol ; 159(3): 367-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26515539

RESUMO

OBJECTIVE: Understanding the origins of Aboriginal Australians is crucial in reconstructing the evolution and spread of Homo sapiens as evidence suggests they represent the descendants of the earliest group to leave Africa. This study analyzed a large sample of Y-chromosomes to answer questions relating to the migration routes of their ancestors, the age of Y-haplogroups, date of colonization, as well as the extent of male-specific variation. METHODS: Knowledge of Y-chromosome variation among Aboriginal Australians is extremely limited. This study examined Y-SNP and Y-STR variation among 657 self-declared Aboriginal males from locations across the continent. 17 Y-STR loci and 47 Y-SNPs spanning the Y-chromosome phylogeny were typed in total. RESULTS: The proportion of non-indigenous Y-chromosomes of assumed Eurasian origin was high, at 56%. Y lineages of indigenous Sahul origin belonged to haplogroups C-M130*(xM8,M38,M217,M347) (1%), C-M347 (19%), K-M526*(xM147,P308,P79,P261,P256,M231,M175,M45,P202) (12%), S-P308 (12%), and M-M186 (0.9%). Haplogroups C-M347, K-M526*, and S-P308 are Aboriginal Australian-specific. Dating of C-M347, K-M526*, and S-P308 indicates that all are at least 40,000 years old, confirming their long-term presence in Australia. Haplogroup C-M347 comprised at least three sub-haplogroups: C-DYS390.1del, C-M210, and the unresolved paragroup C-M347*(xDYS390.1del,M210). CONCLUSIONS: There was some geographic structure to the Y-haplogroup variation, but most haplogroups were present throughout Australia. The age of the Australian-specific Y-haplogroups suggests New Guineans and Aboriginal Australians have been isolated for over 30,000 years, supporting findings based on mitochondrial DNA data. Our data support the hypothesis of more than one route (via New Guinea) for males entering Sahul some 50,000 years ago and give no support for colonization events during the Holocene, from either India or elsewhere.


Assuntos
Cromossomos Humanos Y/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Antropologia Física , Austrália , Variação Genética , Haplótipos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética
7.
Hum Mutat ; 36(1): 151-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25338970

RESUMO

SNPs from the non-recombining part of the human Y chromosome (Y-SNPs) are informative to classify paternal lineages in forensic, genealogical, anthropological, and evolutionary studies. Although thousands of Y-SNPs were identified thus far, previous Y-SNP multiplex tools target only dozens of markers simultaneously, thereby restricting the provided Y-haplogroup resolution and limiting their applications. Here, we overcome this shortcoming by introducing a high-resolution multiplex tool for parallel genotyping-by-sequencing of 530 Y-SNPs using the Ion Torrent PGM platform, which allows classification of 432 worldwide Y haplogroups. Contrary to previous Y-SNP multiplex tools, our approach covers branches of the entire Y tree, thereby maximizing the paternal lineage classification obtainable. We used a default DNA input amount of 10 ng per reaction but preliminary sensitivity testing revealed positive results from as little as 100 pg input DNA. Furthermore, we demonstrate that sample pooling using barcodes is feasible, allowing increased throughput for lower per-sample costs. In addition to the wetlab protocol, we provide a software tool for automated data quality control and haplogroup classification. The unique combination of ultra-high marker density and high sensitivity achievable from low amounts of potentially degraded DNA makes this new multiplex tool suitable for a wide range of Y-chromosome applications.


Assuntos
Cromossomos Humanos Y/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Haplótipos , Humanos , Masculino , Sensibilidade e Especificidade , Análise de Sequência de DNA/economia , Análise de Sequência de DNA/instrumentação , Software
8.
Hum Mutat ; 36(12): 1236-47, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26387877

RESUMO

Whole mitochondrial (mt) genome analysis enables a considerable increase in analysis throughput, and improves the discriminatory power to the maximum possible phylogenetic resolution. Most established protocols on the different massively parallel sequencing (MPS) platforms, however, invariably involve the PCR amplification of large fragments, typically several kilobases in size, which may fail due to mtDNA fragmentation in the available degraded materials. We introduce a MPS tiling approach for simultaneous whole human mt genome sequencing using 161 short overlapping amplicons (average 200 bp) with the Ion Torrent Personal Genome Machine. We illustrate the performance of this new method by sequencing 20 DNA samples belonging to different worldwide mtDNA haplogroups. Additional quality control, particularly regarding the potential detection of nuclear insertions of mtDNA (NUMTs), was performed by comparative MPS analysis using the conventional long-range amplification method. Preliminary sensitivity testing revealed that detailed haplogroup inference was feasible with 100 pg genomic input DNA. Complete mt genome coverage was achieved from DNA samples experimentally degraded down to genomic fragment sizes of about 220 bp, and up to 90% coverage from naturally degraded samples. Overall, we introduce a new approach for whole mt genome MPS analysis from degraded and nondegraded materials relevant to resolve and infer maternal genetic ancestry at complete resolution in anthropological, evolutionary, medical, and forensic applications.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Código de Barras de DNA Taxonômico/instrumentação , Código de Barras de DNA Taxonômico/métodos , Código de Barras de DNA Taxonômico/normas , Genômica/instrumentação , Genômica/métodos , Genômica/normas , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Am J Hum Genet ; 90(4): 675-84, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22482806

RESUMO

Mutational events along the human mtDNA phylogeny are traditionally identified relative to the revised Cambridge Reference Sequence, a contemporary European sequence published in 1981. This historical choice is a continuous source of inconsistencies, misinterpretations, and errors in medical, forensic, and population genetic studies. Here, after having refined the human mtDNA phylogeny to an unprecedented level by adding information from 8,216 modern mitogenomes, we propose switching the reference to a Reconstructed Sapiens Reference Sequence, which was identified by considering all available mitogenomes from Homo neanderthalensis. This "Copernican" reassessment of the human mtDNA tree from its deepest root should resolve previous problems and will have a substantial practical and educational influence on the scientific and public perception of human evolution by clarifying the core principles of common ancestry for extant descendants.


Assuntos
DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Filogenia , Animais , Sequência de Bases , Evolução Biológica , Bases de Dados Genéticas , Variação Genética , Haplótipos , Humanos , Dados de Sequência Molecular , Mutação , Homem de Neandertal/genética
10.
Am J Hum Genet ; 90(3): 486-93, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22365151

RESUMO

Different lines of evidence point to the resettlement of much of western and central Europe by populations from the Franco-Cantabrian region during the Late Glacial and Postglacial periods. In this context, the study of the genetic diversity of contemporary Basques, a population located at the epicenter of the Franco-Cantabrian region, is particularly useful because they speak a non-Indo-European language that is considered to be a linguistic isolate. In contrast with genome-wide analysis and Y chromosome data, where the problem of poor time estimates remains, a new timescale has been established for the human mtDNA and makes this genome the most informative marker for studying European prehistory. Here, we aim to increase knowledge of the origins of the Basque people and, more generally, of the role of the Franco-Cantabrian refuge in the postglacial repopulation of Europe. We thus characterize the maternal ancestry of 908 Basque and non-Basque individuals from the Basque Country and immediate adjacent regions and, by sequencing 420 complete mtDNA genomes, we focused on haplogroup H. We identified six mtDNA haplogroups, H1j1, H1t1, H2a5a1, H1av1, H3c2a, and H1e1a1, which are autochthonous to the Franco-Cantabrian region and, more specifically, to Basque-speaking populations. We detected signals of the expansion of these haplogroups at ∼4,000 years before present (YBP) and estimated their separation from the pan-European gene pool at ∼8,000 YBP, antedating the Indo-European arrival to the region. Our results clearly support the hypothesis of a partial genetic continuity of contemporary Basques with the preceding Paleolithic/Mesolithic settlers of their homeland.


Assuntos
DNA Mitocondrial/genética , Etnicidade/genética , Variação Genética/genética , População Branca/genética , Sequência de Bases , Frequência do Gene , Genética Populacional/métodos , Haplótipos , Humanos , Dados de Sequência Molecular , Filogenia
11.
Mol Genet Metab ; 114(3): 388-96, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25542617

RESUMO

Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The "Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium" is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through the use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial diseases.


Assuntos
Bases de Dados Genéticas , Genoma Mitocondrial , Interface Usuário-Computador , Biologia Computacional , Exoma , Feminino , Genômica , Humanos , Disseminação de Informação , Internet , Masculino , Doenças Mitocondriais/genética , Fenótipo , Software
12.
Hum Mutat ; 35(2): 187-91, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24166809

RESUMO

During the last few decades, a wealth of studies dedicated to the human Y chromosome and its DNA variation, in particular Y-chromosome single-nucleotide polymorphisms (Y-SNPs), has led to the construction of a well-established Y-chromosome phylogeny. Since the recent advent of new sequencing technologies, the discovery of additional Y-SNPs is exploding and their continuous incorporation in the phylogenetic tree is leading to an ever higher resolution. However, the large and increasing amount of information included in the "complete" Y-chromosome phylogeny, which now already includes many thousands of identified Y-SNPs, can be overwhelming and complicates its understanding as well as the task of selecting suitable markers for genotyping purposes in evolutionary, demographic, anthropological, genealogical, medical, and forensic studies. As a solution, we introduce a concise reference phylogeny whereby we do not aim to provide an exhaustive tree that includes all known Y-SNPs but, rather, a quite stable reference tree aiming for optimal global discrimination capacity based on a strongly reduced set that includes only the most resolving Y-SNPs. Furthermore, with this reference tree, we wish to propose a common standard for Y-marker as well as Y-haplogroup nomenclature. The current version of our tree is based on a core set of 417 branch-defining Y-SNPs and is available online at http://www.phylotree.org/Y.


Assuntos
Cromossomos Humanos Y/genética , Bases de Dados Genéticas , Polimorfismo de Nucleotídeo Único , Evolução Molecular , Variação Genética , Genótipo , Humanos , Modelos Moleculares , Filogenia
13.
Ann Hum Genet ; 78(2): 92-103, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24571229

RESUMO

Y-chromosomal short tandem repeats (Y-STRs) are often used in addition to Y-chromosomal single-nucleotide polymorphisms (Y-SNP) to detect subtle patterns in a population genetic structure. There are, however, indications for Y-STR haplotype resemblance across different subhaplogroups within haplogroup R1b1b2 (R-M269) which may lead to erosion in the observation of the population genetic pattern. Hence the question arises whether Y-STR haplotypes are still informative beyond high-resolution Y-SNP genotyping for population genetic studies. To address this question, we genotyped the Y chromosomes of more than 1000 males originating from the West-European regions of Flanders (Belgium), North-Brabant and Limburg (the Netherlands) at the highest resolution of the current Y-SNP tree together with 38 commonly used Y-STRs. We observed high resemblance of Y-STR haplotypes between males belonging to different subhaplogroups of haplogroup R-M269. Several subhaplogroups within R-M269 could not be distinguished from each other based on differences in Y-STR haplotype variation. The most likely hypothesis to explain this similarity of Y-STR haplotypes within the population of R-M269 members is a recent radiation where various subhaplogroups originated within a relatively short time period. We conclude that high-resolution Y-SNP typing rather than Y-STR typing might be more useful to study population genetic patterns in (Western) Europe.


Assuntos
Cromossomos Humanos Y/genética , Repetições de Microssatélites , População Branca/genética , Bélgica , Variação Genética , Genética Populacional , Haplótipos , Humanos , Masculino , Países Baixos , Filogenia , Polimorfismo de Nucleotídeo Único , População Branca/classificação
14.
Mol Biol Evol ; 29(2): 545-64, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21771715

RESUMO

Although genetic studies have contributed greatly to our understanding of the colonization of Near and Remote Oceania, important gaps still exist. One such gap is the Solomon Islands, which extend between Bougainville and Vanuatu, thereby bridging Near and Remote Oceania, and include both Austronesian-speaking and Papuan-speaking groups. Here, we describe patterns of mitochondrial DNA (mtDNA) and nonrecombining Y chromosome (NRY) variation in over 700 individuals from 18 populations in the Solomons, including 11 Austronesian-speaking groups, 3 Papuan-speaking groups, and 4 Polynesian Outliers (descended via back migration from Polynesia). We find evidence for ancient (pre-Lapita) colonization of the Solomons in old NRY paragroups as well as from M2-M353, which probably arose in the Solomons ∼9,200 years ago and is the most frequent NRY haplogroup there. There are no consistent genetic differences between Austronesian-speaking and Papuan-speaking groups, suggesting extensive genetic contact between them. Santa Cruz, which is located in Remote Oceania, shows unusually low frequencies of mtDNA and NRY haplogroups of recent Asian ancestry. This is in apparent contradiction with expectations based on archaeological and linguistic evidence for an early (∼3,200 years ago), direct colonization of Santa Cruz by Lapita people from the Bismarck Archipelago, via a migration that "leapfrogged" over the rest of the Solomons. Polynesian Outliers show dramatic island-specific founder events involving various NRY haplogroups. We also find that NRY, but not mtDNA, genetic distance is correlated with the geographic distance between Solomons groups and that historically attested spheres of cultural interaction are associated with the recent genetic structure of Solomons groups, as revealed by mtDNA HV1 sequence and Y-STR haplotype diversity. Our results fill an important lacuna in human genetic studies of Oceania and aid in understanding the colonization and genetic history of this region.


Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Filogenia , Etnicidade/genética , Evolução Molecular , Feminino , Frequência do Gene , Variação Genética , Genética Populacional , Haplótipos , Humanos , Masculino , Melanesia , Dados de Sequência Molecular , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética
15.
Electrophoresis ; 34(20-21): 3029-38, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23893838

RESUMO

Inherited DNA polymorphisms located within the nonrecombing portion of the human Y chromosome provide a powerful means of tracking the patrilineal ancestry of male individuals. Recently, we introduced an efficient genotyping method for the detection of the basal Y-chromosome haplogroups A to T, as well as an additional method for the dissection of haplogroup O into its sublineages. To further extend the use of the Y chromosome as an evolutionary marker, we here introduce a set of genotyping assays for fine-resolution subtyping of haplogroups E, G, I, J, and R, which make up the bulk of Western Eurasian and African Y chromosomes. The marker selection includes a total of 107 carefully selected bi-allelic polymorphisms that were divided into eight hierarchically organized multiplex assays (two for haplogroup E, one for I, one for J, one for G, and three for R) based on the single-base primer extension (SNaPshot) technology. Not only does our method allow for enhanced Y-chromosome lineage discrimination, the more restricted geographic distribution of the subhaplogroups covered also enables more fine-scaled estimations of patrilineal bio-geographic origin. Supplementing our previous method for basal Y-haplogroup detection, the currently introduced assays are thus expected to be of major relevance for future DNA studies targeting male-specific ancestry for forensic, anthropological, and genealogical purposes.


Assuntos
Cromossomos Humanos Y/genética , Técnicas de Genotipagem/métodos , Genótipo , Haplótipos , Humanos , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único
16.
Int J Legal Med ; 127(6): 1097-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24077990

RESUMO

As a contribution to the geographic coverage of EMPOP, currently the best available forensic mitochondrial DNA (mtDNA) database, a total of 299 Swedish individuals were analysed by sequencing of the first and second hypervariable regions of the mtDNA genome. In this sample set, a total of 179 different haplotypes were detected. The genetic diversity was estimated to be 0.9895 (±0.0023), and the random match probability was 1.39 %. The most abundant haplogroups were HV (including its subhaplogroups H andV) with a frequency of 46.5%, followed by haplogroup U(including its subhaplogroup K) at 27.8 %, haplogroup T at 10.0 % and haplogroup J at 7.0 %, a distribution that is consistent with previous observations in other European populations.


Assuntos
DNA Mitocondrial/genética , Genética Forense/métodos , Genética Populacional , Genoma Mitocondrial , Bases de Dados Genéticas , Projeto HapMap , Haplótipos , Humanos , Suécia
17.
Am J Phys Anthropol ; 151(1): 58-67, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23526367

RESUMO

The Maldives are an 850 km-long string of atolls located centrally in the northern Indian Ocean basin. Because of this geographic situation, the present-day Maldivian population has potential for uncovering genetic signatures of historic migration events in the region. We therefore studied autosomal DNA-, mitochondrial DNA-, and Y-chromosomal DNA markers in a representative sample of 141 unrelated Maldivians, with 119 from six major settlements. We found a total of 63 different mtDNA haplotypes that could be allocated to 29 mtDNA haplogroups, mostly within the M, R, and U clades. We found 66 different Y-STR haplotypes in 10 Y-chromosome haplogroups, predominantly H1, J2, L, R1a1a, and R2. Parental admixture analysis for mtDNA- and Y-haplogroup data indicates a strong genetic link between the Maldive Islands and mainland South Asia, and excludes significant gene flow from Southeast Asia. Paternal admixture from West Asia is detected, but cannot be distinguished from admixture from South Asia. Maternal admixture from West Asia is excluded. Within the Maldives, we find a subtle genetic substructure in all marker systems that is not directly related to geographic distance or linguistic dialect. We found reduced Y-STR diversity and reduced male-mediated gene flow between atolls, suggesting independent male founder effects for each atoll. Detected reduced female-mediated gene flow between atolls confirms a Maldives-specific history of matrilocality. In conclusion, our new genetic data agree with the commonly reported Maldivian ancestry in South Asia, but furthermore suggest multiple, independent immigration events and asymmetrical migration of females and males across the archipelago.


Assuntos
Povo Asiático/genética , Fluxo Gênico , Migração Humana/história , Cromossomos Humanos Y , DNA Mitocondrial/genética , Feminino , Marcadores Genéticos/genética , Genética Populacional , Haplótipos , História Antiga , Humanos , Ilhas do Oceano Índico , Masculino , Polimorfismo de Nucleotídeo Único
18.
Mol Biol Evol ; 28(4): 1349-61, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21059792

RESUMO

The amount of genetic diversity in a population is determined by demographic and selection events in its history. Human populations which exhibit greatly reduced overall genetic diversity, presumably resulting from severe bottlenecks or founder events, are particularly interesting, not least because of their potential to serve as valuable resources for health studies. Here, we present an unexpected case, the human population of Nias Island in Indonesia, that exhibits severely reduced Y chromosome (non-recombining portion of the Y chromosome [NRY]) and to a lesser extent also reduced mitochondrial DNA (mtDNA) diversity as compared with most other populations from the Asia/Oceania region. Our genetic data, collected from more than 400 individuals from across the island, suggest a strong previously undetected bottleneck or founder event in the human population history of Nias, more pronounced for males than for females, followed by subsequent genetic isolation. Our findings are unexpected given the island's geographic proximity to the genetically highly diverse Southeast Asian world, as well as our previous knowledge about the human history of Nias. Furthermore, all NRY and virtually all mtDNA haplogroups observed in Nias can be attributed to the Austronesian expansion, in line with linguistic data, and in contrast with archaeological evidence for a pre-Austronesian occupation of Nias that, as we show here, left no significant genetic footprints in the contemporary population. Our work underlines the importance of human genetic diversity studies not only for a better understanding of human population history but also because of the potential relevance for genetic disease-mapping studies.


Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Variação Genética , Geografia , Ásia , Povo Asiático/genética , Feminino , Genética Populacional , Haplótipos , Humanos , Indonésia , Masculino , Dados de Sequência Molecular
19.
Mol Biol Evol ; 28(2): 1013-24, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20978040

RESUMO

The geographic origin and time of dispersal of Austroasiatic (AA) speakers, presently settled in south and southeast Asia, remains disputed. Two rival hypotheses, both assuming a demic component to the language dispersal, have been proposed. The first of these places the origin of Austroasiatic speakers in southeast Asia with a later dispersal to south Asia during the Neolithic, whereas the second hypothesis advocates pre-Neolithic origins and dispersal of this language family from south Asia. To test the two alternative models, this study combines the analysis of uniparentally inherited markers with 610,000 common single nucleotide polymorphism loci from the nuclear genome. Indian AA speakers have high frequencies of Y chromosome haplogroup O2a; our results show that this haplogroup has significantly higher diversity and coalescent time (17-28 thousand years ago) in southeast Asia, strongly supporting the first of the two hypotheses. Nevertheless, the results of principal component and "structure-like" analyses on autosomal loci also show that the population history of AA speakers in India is more complex, being characterized by two ancestral components-one represented in the pattern of Y chromosomal and EDAR results and the other by mitochondrial DNA diversity and genomic structure. We propose that AA speakers in India today are derived from dispersal from southeast Asia, followed by extensive sex-specific admixture with local Indian populations.


Assuntos
Emigração e Imigração , Variação Genética , Genética Populacional , Idioma , Sudeste Asiático , Cromossomos Humanos Y , DNA Mitocondrial/genética , Humanos , Índia
20.
J Hum Genet ; 57(1): 65-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22048658

RESUMO

The majority of human Y chromosomes in men from East and Southeast Asia, and a considerable proportion of Oceanian men, especially those from Remote Oceania, belong to haplogroup O, characterized by a 5-bp deletion known as M175 (rs2032678). Recent advances in Y-SNP (single-nucleotide polymorphism) discovery have substantially improved the phylogenetic resolution of haplogroup O sublineages. By taking advantage of this recent knowledge, we hereby introduce a sensitive Y-SNP multiplex genotyping assay for the dissection of haplogroup O into its most significant sublineages. The multiplex assay thus provides an efficient way to infer patrilineal biogeographic ancestry in males of Asian/Oceanian patrilineal descent, and is suitable for applications in human population genetics, anthropological, genealogical, as well as forensic studies.


Assuntos
Cromossomos Humanos Y/genética , Pai , Técnicas de Genotipagem/métodos , Haplótipos/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Sudeste Asiático , Eletroforese em Gel de Ágar , Ásia Oriental , Marcadores Genéticos , Genética Populacional , Humanos , Masculino , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA