Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(17)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450682

RESUMO

Cells are exposed to reactive oxygen species (ROS) as a by-product of mitochondrial metabolism, especially under hypoxia. ROS are also enzymatically generated at the plasma membrane during inflammation. Radicals cause cellular damage leading to cell death, as they react indiscriminately with surrounding lipids, proteins, and nucleotides. However, ROS are also important for many physiological processes, including signaling, pathogen killing and chemotaxis. The sensitivity of cells to ROS therefore likely depends on the subcellular location of ROS production, but how this affects cell viability is poorly understood. As ROS generation consumes oxygen, and hypoxia-mediated signaling upregulates expression of antioxidant transcription factor Nrf2, it is difficult to discern hypoxic from radical stress. In this study, we developed an optogenetic toolbox for organelle-specific generation of ROS using the photosensitizer protein SuperNova which produces superoxide anion upon excitation with 590 nm light. We fused SuperNova to organelle specific localization signals to induce ROS with high precision. Selective ROS production did not affect cell viability in most organelles except for the nucleus. SuperNova is a promising tool to induce locally targeted ROS production, opening up new possibilities to investigate processes and organelles that are affected by localized ROS production.


Assuntos
Núcleo Celular/metabolismo , Radicais Livres/metabolismo , Organelas/metabolismo , Estresse Oxidativo , Animais , Biomarcadores , Células COS , Morte Celular , Núcleo Celular/genética , Chlorocebus aethiops , Dano ao DNA , Espécies Reativas de Oxigênio/metabolismo
2.
Viruses ; 16(5)2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793659

RESUMO

Respiratory syncytial virus (RSV) is the most prevalent cause of acute lower respiratory infection in young children. Currently, the first RSV vaccines are approved by the FDA. Recently, N6-methyladenosine (m6A) RNA methylation has been implicated in the regulation of the viral life cycle and replication of many viruses, including RSV. m6A methylation of RSV RNA has been demonstrated to promote replication and prevent anti-viral immune responses by the host. Whether m6A is also involved in viral entry and whether m6A can also affect RSV infection via different mechanisms than methylation of viral RNA is poorly understood. Here, we identify m6A reader YTH domain-containing protein 1 (YTHDC1) as a novel negative regulator of RSV infection. We demonstrate that YTHDC1 abrogates RSV infection by reducing the expression of RSV entry receptor CX3C motif chemokine receptor 1 (CX3CR1) on the cell surface of lung epithelial cells. Altogether, these data reveal a novel role for m6A methylation and YTHDC1 in the viral entry of RSV. These findings may contribute to the development of novel treatment options to control RSV infection.


Assuntos
Adenosina , Receptor 1 de Quimiocina CX3C , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Internalização do Vírus , Humanos , Infecções por Vírus Respiratório Sincicial/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/fisiologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Replicação Viral , Metilação , Regulação para Baixo , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Células Epiteliais/virologia , Células Epiteliais/metabolismo , Linhagem Celular , Células A549 , RNA Viral/genética , RNA Viral/metabolismo , Interações Hospedeiro-Patógeno , Proteínas do Tecido Nervoso
3.
J Leukoc Biol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657004

RESUMO

N6-methyladenosine (m6A) is a RNA modification that can regulate post-transcriptional processes including RNA stability, translation, splicing and nuclear export. In CD4+ lymphocytes, m6A modifications have been demonstrated to play a role in early differentiation processes. The role of m6A in CD4+ T cell activation and effector function remains incompletely understood. To assess the role of m6A in CD4+ T lymphocyte activation and function, we assessed the transcriptome-wide m6A landscape of human primary CD4+ T cells by methylated RNA immunoprecipitation (meRIP) sequencing. Stimulation of the T cells impacted the m6A pattern of hundreds of transcripts including tumor necrosis factor (TNF). m6A methylation was increased on TNF mRNA after activation, predominantly in the 3' untranslated region (UTR) of the transcript. Manipulation of m6A levels in primary human T cells, the directly affected the expression of TNF. Furthermore, we identified that the m6A reader protein YT521-B homology domain family-2 (YTHDF2) binds m6A-methylated TNF mRNA, and promotes its degradation. Taken together, this study demonstrates that TNF expression in CD4+ T lymphocytes is regulated via m6A and YTHDF2, thereby providing novel insight into the regulation of T cell effector functions.


T helper cells are immune cells of the adaptive immune system. These cells are activated by antigen presenting cells that have engulfed invading pathogens. When the T helper cell is activated, it will produce and excrete signaling molecules (cytokines) that activate other immune cells in order to eradicate these pathogens. Cytokines are formed after translation of RNA molecules that encode for these cytokines. In this study it was found that a modification (m6A) on RNA molecules is involved in the regulation of the life cycle of these RNA molecules. It was found that the degradation of RNA encoding for cytokine TNF was mediated through m6A and its 'reader' protein YTHDF2 in activated T helper cells. As TNF promotes inflammation, reduction of TNF production through this mechanism dampens the immune response and therefore prevents chronic inflammation.

4.
Biology (Basel) ; 12(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37508433

RESUMO

T cell activation is a highly regulated process, modulated via the expression of various immune regulatory proteins including cytokines, surface receptors and co-stimulatory proteins. N6-methyladenosine (m6A) is an RNA modification that can directly regulate RNA expression levels and it is associated with various biological processes. However, the function of m6A in T cell activation remains incompletely understood. We identify m6A as a novel regulator of the expression of the CD40 ligand (CD40L) in human CD4+ lymphocytes. Manipulation of the m6A 'eraser' fat mass and obesity-associated protein (FTO) and m6A 'writer' protein methyltransferase-like 3 (METTL3) directly affects the expression of CD40L. The m6A 'reader' protein YT521-B homology domain family-2 (YTHDF2) is hypothesized to be able to recognize and bind m6A specific sequences on the CD40L mRNA and promotes its degradation. This study demonstrates that CD40L expression in human primary CD4+ T lymphocytes is regulated via m6A modifications, elucidating a new regulatory mechanism in CD4+ T cell activation that could possibly be leveraged in the future to modulate T cell responses in patients with immune-related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA