RESUMO
There is consensus that plant species richness enhances plant productivity within natural grasslands, but the underlying drivers remain debated. Recently, differential accumulation of soil-borne fungal pathogens across the plant diversity gradient has been proposed as a cause of this pattern. However, the below-ground environment has generally been treated as a 'black box' in biodiversity experiments, leaving these fungi unidentified. Using next generation sequencing and pathogenicity assays, we analysed the community composition of root-associated fungi from a biodiversity experiment to examine if evidence exists for host specificity and negative density dependence in the interplay between soil-borne fungi, plant diversity and productivity. Plant species were colonised by distinct (pathogenic) fungal communities and isolated fungal species showed negative, species-specific effects on plant growth. Moreover, 57% of the pathogenic fungal operational taxonomic units (OTUs) recorded in plant monocultures were not detected in eight plant species plots, suggesting a loss of pathogenic OTUs with plant diversity. Our work provides strong evidence for host specificity and negative density-dependent effects of root-associated fungi on plant species in grasslands. Our work substantiates the hypothesis that fungal root pathogens are an important driver of biodiversity-ecosystem functioning relationships.
Assuntos
Biodiversidade , Fungos/fisiologia , Desenvolvimento Vegetal , Plantas/microbiologia , Microbiologia do Solo , Biomassa , Fungos/patogenicidade , Interações Hospedeiro-Patógeno , Modelos Biológicos , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Especificidade da EspécieRESUMO
Pseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Desenvolvimento Vegetal/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Pseudomonas fluorescens/genética , Pseudomonas syringae/patogenicidade , Aminoacil-tRNA Sintetases/genética , Proteínas de Arabidopsis/genética , Estudo de Associação Genômica Ampla , Imunidade Inata , Raízes de Plantas/microbiologia , Pseudomonas syringae/genéticaRESUMO
Swarming motility is a flagella-driven multicellular behaviour that allows bacteria to colonize new niches and escape competition. Here, we investigated the evolution of specific mutations in the GacS/GacA two-component regulatory system in swarming colonies of Pseudomonas protegens Pf-5. Experimental evolution assays showed that repeated rounds of swarming by wildtype Pf-5 drives the accumulation of gacS/gacA spontaneous mutants on the swarming edge. These mutants cannot swarm on their own because they lack production of the biosurfactant orfamide A, but they do co-swarm with orfamide-producing wildtype Pf-5. These co-swarming assays further demonstrated that ΔgacA mutant cells indeed predominate on the edge and that initial ΔgacA:wildtype Pf-5 ratios of at least 2:1 lead to a collapse of the swarming colony. Subsequent whole-genome transcriptome analyses revealed that genes associated with motility, resource acquisition, chemotaxis and efflux were significantly upregulated in ΔgacA mutant on swarming medium. Moreover, transmission electron microscopy showed that ΔgacA mutant cells were longer and more flagellated than wildtype cells, which may explain their predominance on the swarming edge. We postulate that adaptive evolution through point mutations is a common feature of range-expanding microbial populations and that the putative fitness benefits of these mutations during dispersal of bacteria into new territories are frequency-dependent.
Assuntos
Proteínas de Bactérias/genética , Mutação , Pseudomonas/citologia , Pseudomonas/metabolismo , Proteínas de Bactérias/metabolismo , Quimiotaxia , Flagelos/genética , Flagelos/metabolismo , Perfilação da Expressão Gênica , Pseudomonas/genéticaRESUMO
Beneficial soil microbes can promote plant growth and induce systemic resistance (ISR) in aboveground tissues against pathogens and herbivorous insects. Despite the increasing interest in microbial-ISR against herbivores, the underlying molecular and chemical mechanisms of this phenomenon remain elusive. Using Arabidopsis thaliana and the rhizobacterium Pseudomonas simiae WCS417r (formerly known as P. fluorescens WCS417r), we here evaluate the role of the JA-regulated MYC2-branch and the JA/ET-regulated ORA59-branch in modulating rhizobacteria-ISR to Mamestra brassicae by combining gene transcriptional, phytochemical, and herbivore performance assays. Our data show a consistent negative effect of rhizobacteria-mediated ISR on the performance of M. brassicae. Functional JA- and ET-signaling pathways are required for this effect, as shown by investigating the knock-out mutants dde2-2 and ein2-1. Additionally, whereas herbivory mainly induces the MYC2-branch, rhizobacterial colonization alone or in combination with herbivore infestation induces the ORA59-branch of the JA signaling pathway. Rhizobacterial colonization enhances the synthesis of camalexin and aliphatic glucosinolates (GLS) compared to the control, while it suppresses the herbivore-induced levels of indole GLS. These changes are associated with modulation of the JA-/ET-signaling pathways. Our data show that the colonization of plant roots by rhizobacteria modulates plant-insect interactions by prioritizing the JA/ET-regulated ORA59-branch over the JA-regulated MYC2-branch. This study elucidates how microbial plant symbionts can modulate the plant immune system to mount an effective defense response against herbivorous plant attackers.
Assuntos
Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Glucosinolatos/metabolismo , Herbivoria , Lepidópteros/fisiologia , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Pseudomonas/fisiologia , Animais , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Indóis/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Rhizobium/fisiologia , Transdução de Sinais , Simbiose , Tiazóis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45-52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.
Assuntos
Genoma Bacteriano , Plantas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Análise de Sequência de DNA , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Bacteriocinas/genética , Heterogeneidade Genética , Variação Genética , Interações Hospedeiro-Patógeno/genética , Insetos/genética , Família Multigênica , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas/genética , Plantas/microbiologia , Sequências Repetitivas de Ácido Nucleico/genética , Resorcinóis/metabolismoRESUMO
Systemic resistance induced in plants by nonpathogenic rhizobacteria is typically effective against multiple pathogens. Here, we show that root-colonizing Pseudomonas fluorescens strain SS101 (Pf.SS101) enhanced resistance in Arabidopsis (Arabidopsis thaliana) against several bacterial pathogens, including Pseudomonas syringae pv tomato (Pst) and the insect pest Spodoptera exigua. Transcriptomic analysis and bioassays with specific Arabidopsis mutants revealed that, unlike many other rhizobacteria, the Pf.SS101-induced resistance response to Pst is dependent on salicylic acid signaling and not on jasmonic acid and ethylene signaling. Genome-wide transcriptomic and untargeted metabolomic analyses showed that in roots and leaves of Arabidopsis plants treated with Pf.SS101, approximately 1,910 genes and 50 metabolites were differentially regulated relative to untreated plants. Integration of both sets of "omics" data pointed to a prominent role of camalexin and glucosinolates in the Pf.SS101-induced resistance response. Subsequent bioassays with seven Arabidopsis mutants (myb51, cyp79B2cyp79B3, cyp81F2, pen2, cyp71A12, cyp71A13, and myb28myb29) disrupted in the biosynthesis pathways for these plant secondary metabolites showed that camalexin and glucosinolates are indeed required for the induction of Pst resistance by Pf.SS101. Also for the insect S. exigua, the indolic glucosinolates appeared to play a role in the Pf.SS101-induced resistance response. This study provides, to our knowledge for the first time, insight into the substantial biochemical and temporal transcriptional changes in Arabidopsis associated with the salicylic acid-dependent resistance response induced by specific rhizobacteria.
Assuntos
Arabidopsis/genética , Arabidopsis/microbiologia , Metaboloma/genética , Pseudomonas fluorescens/fisiologia , Transcriptoma/genética , Animais , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Proteínas de Arabidopsis/metabolismo , Cromatografia Líquida , Resistência à Doença/genética , Resistência à Doença/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Glucosinolatos/metabolismo , Herbivoria/genética , Indóis/metabolismo , Espectrometria de Massas , Redes e Vias Metabólicas/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Spodoptera/fisiologia , Tiazóis/metabolismoRESUMO
Phytophthora capsici causes devastating diseases on a broad range of plant species. To better understand the interaction with its host plants, knowledge obtained from a model pathosystem can be instrumental. Here, we describe the interaction between P. capsici and Arabidopsis and the exploitation of this novel pathosystem to assign metabolic pathways involved in defence against P. capsici. Inoculation assays on Arabidopsis accessions with different P. capsici isolates revealed interaction specificity among accession-isolate combinations. In a compatible interaction, appressorium-mediated penetration was followed by the formation of invasive hyphae, haustoria and sporangia in leaves and roots. In contrast, in an incompatible interaction, P. capsici infection elicited callose deposition, accumulation of active oxygen species and cell death, resulting in early pathogen encasement in leaves. Moreover, Arabidopsis mutants with defects in salicylic acid signalling, camalexin or indole glucosinolates biosynthesis pathways displayed severely compromised resistance to P. capsici. It is anticipated that this model pathosystem will facilitate the genetic dissection of complex traits responsible for resistance against P. capsici.
Assuntos
Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Indóis/metabolismo , Phytophthora/fisiologia , Ácido Salicílico/metabolismo , Tiazóis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Glucosinolatos/metabolismo , Oxilipinas/metabolismo , Fenótipo , Doenças das Plantas/prevenção & controleRESUMO
Oomycete pathogens cause major yield losses for many crop plants, and their control depends heavily on agrochemicals. Cyclic lipopeptides (CLPs) were recently discovered as a new class of natural compounds with strong activities against oomycetes. The CLP massetolide A (Mass A), produced by Pseudomonas fluorescens, has zoosporicidal activity, induces systemic resistance, and reduces late blight in tomato. To gain further insight into the modes of action of CLPs, the effects of Mass A on pore formation, mycelial growth, sporangium formation, and zoospore behavior were investigated, as was the involvement of G proteins in the sensitivity of Phytophthora infestans to Mass A. The results showed that Mass A induced the formation of transmembrane pores with an estimated size of between 1.2 and 1.8 nm. Dose-response experiments revealed that zoospores were the most sensitive to Mass A, followed by mycelium and cysts. Mass A significantly reduced sporangium formation and caused increased branching and swelling of hyphae. At relatively low concentrations, Mass A induced encystment of zoospores. It had no effect on the chemotactic response of zoospores but did adversely affect zoospore autoaggregation. A loss-of-function transformant of P. infestans lacking the G-protein alpha subunit was more sensitive to Mass A, whereas a gain-of-function transformant required a higher Mass A concentration to interfere with zoospore aggregation. Results indicate that Mass A disturbs various developmental stages in the life cycle of P. infestans and suggest that the cellular responses of P. infestans to this CLP are, in part, dependent on G-protein signaling.
Assuntos
Proteínas de Bactérias/metabolismo , Desinfetantes/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Lipopeptídeos/farmacologia , Phytophthora infestans/efeitos dos fármacos , Tensoativos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Ligação ao GTP/genética , Viabilidade Microbiana , Micélio/efeitos dos fármacos , Esporos/efeitos dos fármacosRESUMO
Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine the differences in gene expression between the Cd-tolerant Zn-hyperaccumulator T. caerulescens and the Cd-sensitive non-accumulator Arabidopsis. This comparative transcriptional analysis emphasized the role of genes involved in lignin, glutathione and sulphate metabolism. Furthermore the transcription factors MYB72 and bHLH100 were studied for their involvement in metal homeostasis, as they showed an altered expression after exposure to Cd. The Arabidopsis myb72 knockout mutant was more sensitive to excess Zn or iron (Fe) deficiency than wild type, while Arabidopsis transformants overexpressing bHLH100 showed increased tolerance to high Zn and nickel (Ni) compared to wild-type plants, confirming their role in metal homeostasis in Arabidopsis.
Assuntos
Arabidopsis/efeitos dos fármacos , Cádmio/farmacologia , Glutationa/metabolismo , Lignina/metabolismo , Sulfatos/metabolismo , Thlaspi/efeitos dos fármacos , Arabidopsis/metabolismo , Cádmio/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Ferro/metabolismo , Ferro/farmacologia , Níquel/metabolismo , Níquel/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Thlaspi/metabolismo , Transcrição Gênica/efeitos dos fármacos , Zinco/metabolismo , Zinco/farmacologiaRESUMO
Recognition of pathogens by plants initiates defense responses including activation of defense-related genes and production of antimicrobial compounds. Recently, we reported that Phytophthora capsici can successfully infect Arabidopsis and revealed interaction specificity among various accession-isolate combinations. We used this novel pathosystem to demonstrate that camalexin, indole glucosinolates (iGS) and salicylic acid (SA) have a role in defense against P. capsici. To further investigate the role of camalexin-, iGS- and SA-related pathways in the differential interaction between Arabidopsis and P. capsici, we monitored expression of marker genes over time during infection. In both compatible and incompatible interactions, induction of expression was detected, but in compatible interactions transcript levels of camalexin and iGS marker genes were higher.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Phytophthora/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Indóis/metabolismo , Imunidade Vegetal , Tiazóis/metabolismoRESUMO
The micronutrient zinc has an essential role in physiological and metabolic processes in plants as a cofactor or structural element in 300 catalytic and noncatalytic proteins, but it is very toxic when available in elevated amounts. Plants tightly regulate their internal zinc concentrations in a process called zinc homeostasis. The exceptional zinc hyperaccumulator species Thlaspi caerulescens can accumulate up to 3% of zinc, but also high amounts of nickel and cadmium, without any sign of toxicity. This should have drastic effects on the zinc homeostasis mechanism. We examined in detail the transcription profiles of roots of Arabidopsis thaliana and T. caerulescens plants grown under deficient, sufficient, and excess supply of zinc. A total of 608 zinc-responsive genes with at least a 3-fold difference in expression level were detected in A. thaliana and 352 in T. caerulescens in response to changes in zinc supply. Only 14% of these genes were also zinc responsive in A. thaliana. When comparing A. thaliana with T. caerulescens at each zinc exposure, more than 2,200 genes were significantly differentially expressed (>or=5-fold and false discovery rate < 0.05). While a large fraction of these genes are of yet unknown function, many genes with a different expression between A. thaliana and T. caerulescens appear to function in metal homeostasis, in abiotic stress response, and in lignin biosynthesis. The high expression of lignin biosynthesis genes corresponds to the deposition of lignin in the endodermis, of which there are two layers in T. caerulescens roots and only one in A. thaliana.