Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Ther ; 32(7): 2094-2112, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796704

RESUMO

Sialidosis (mucolipidosis I) is a glycoprotein storage disease, clinically characterized by a spectrum of systemic and neurological phenotypes. The primary cause of the disease is deficiency of the lysosomal sialidase NEU1, resulting in accumulation of sialylated glycoproteins/oligosaccharides in tissues and body fluids. Neu1-/- mice recapitulate the severe, early-onset forms of the disease, affecting visceral organs, muscles, and the nervous system, with widespread lysosomal vacuolization evident in most cell types. Sialidosis is considered an orphan disorder with no therapy currently available. Here, we assessed the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis. Neu1-/- mice were co-injected with two scAAV2/8 vectors, expressing human NEU1 and its chaperone PPCA. Treated mice were phenotypically indistinguishable from their WT controls. NEU1 activity was restored to different extent in most tissues, including the brain, heart, muscle, and visceral organs. This resulted in diminished/absent lysosomal vacuolization in multiple cell types and reversal of sialyl-oligosacchariduria. Lastly, normalization of lysosomal exocytosis in the cerebrospinal fluids and serum of treated mice, coupled to diminished neuroinflammation, were measures of therapeutic efficacy. These findings point to AAV-mediated gene therapy as a suitable treatment for sialidosis and possibly other diseases, associated with low NEU1 expression.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Mucolipidoses , Neuraminidase , Animais , Dependovirus/genética , Terapia Genética/métodos , Mucolipidoses/terapia , Mucolipidoses/genética , Neuraminidase/genética , Neuraminidase/metabolismo , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Humanos , Lisossomos/metabolismo , Camundongos Knockout , Transdução Genética , Expressão Gênica
2.
J Biol Chem ; 298(10): 102425, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030822

RESUMO

Alix is a ubiquitously expressed scaffold protein that participates in numerous cellular processes related to the remodeling/repair of membranes and the actin cytoskeleton. Alix exists in monomeric and dimeric/multimeric configurations, but how dimer formation occurs and what role the dimer has in Alix-mediated processes are still largely elusive. Here, we reveal a mechanism for Alix homodimerization mediated by disulfide bonds under physiological conditions and demonstrate that the Alix dimer is enriched in exosomes and F-actin cytoskeleton subcellular fractions. Proteomic analysis of exosomes derived from Alix-/- primary cells underlined the indispensable role of Alix in loading syntenin into exosomes, thereby regulating the cellular levels of this protein. Using a set of deletion mutants, we define the function of Alix Bro1 domain, which is solely required for its exosomal localization, and that of the V domain, which is needed for recruiting syntenin into exosomes. We reveal an essential role for Cys814 within the disordered proline-rich domain for Alix dimerization. By mutating this residue, we show that Alix remains exclusively monomeric and, in this configuration, is effective in loading syntenin into exosomes. In contrast, loss of dimerization affects the ability of Alix to associate with F-actin, thereby compromising Alix-mediated cytoskeleton remodeling. We propose that dimeric and monomeric forms of Alix selectively execute two of the protein's main functions: exosomal cargo loading and cytoskeleton remodeling.


Assuntos
Actinas , Proteínas de Ligação ao Cálcio , Exossomos , Sinteninas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Exossomos/metabolismo , Proteômica , Sinteninas/metabolismo , Humanos , Animais , Camundongos , Multimerização Proteica
3.
Biochim Biophys Acta ; 1852(9): 1755-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26001931

RESUMO

Neuraminidase-1 (NEU1) is the sialidase responsible for the catabolism of sialoglycoconjugates in lysosomes. Congenital NEU1 deficiency causes sialidosis, a severe lysosomal storage disease associated with a broad spectrum of clinical manifestations, which also include skeletal deformities, skeletal muscle hypotonia and weakness. Neu1(-/-) mice, a model of sialidosis, develop an atypical form of muscle degeneration caused by progressive expansion of the connective tissue that infiltrates the muscle bed, leading to fiber degeneration and atrophy. Here we investigated the role of Neu1 in the myogenic process that ensues during muscle regeneration after cardiotoxin-induced injury of limb muscles. A comparative analysis of cardiotoxin-treated muscles from Neu1(-/-) mice and Neu1(+/+) mice showed increased inflammatory and proliferative responses in the absence of Neu1 during the early stages of muscle regeneration. This was accompanied by significant and sequential upregulation of Pax7, MyoD, and myogenin mRNAs. The levels of both MyoD and myogenin proteins decreased during the late stages of regeneration, which most likely reflected an increased rate of degradation of the myogenic factors in the Neu1(-/-) muscle. We also observed a delay in muscle cell differentiation, which was characterized by prolonged expression of embryonic myosin heavy chain, as well as reduced myofiber cross-sectional area. At the end of the regenerative process, collagen type III deposition was increased compared to wild-type muscles and internal controls, indicating the initiation of fibrosis. Overall, these results point to a role of Neu1 throughout muscle regeneration.

4.
Biochim Biophys Acta ; 1832(10): 1784-92, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23770387

RESUMO

The lysosomal storage disease sialidosis is caused by a primary deficiency of the sialidase N-acetyl-α-neuraminidase-1 (NEU1). Patients with type I sialidosis develop an attenuated, non-neuropathic form of the disease also named cherry red spot myoclonus syndrome, with symptoms arising during juvenile/ adult age. NEU1 requires binding to its chaperone, protective protein/cathepsin A (PPCA), for lysosomal compartmentalization, stability and catalytic activation. We have generated a new mouse model of type I sialidosis that ubiquitously expresses a NEU1 variant carrying a V54M amino acid substitution identified in an adult patient with type I sialidosis. Mutant mice developed signs of lysosomal disease after 1year of age, predominantly in the kidney, albeit low residual NEU1 activity was detected in most organs and cell types. We demonstrate that the activity of the mutant enzyme could be effectively increased in all systemic tissues by chaperone-mediated gene therapy with a liver-tropic recombinant AAV2/8 vector expressing PPCA. This resulted in clear amelioration of the disease phenotype. These results suggest that at least some of the NEU1 mutations associated with type I sialidosis may respond to PPCA-chaperone-mediated gene therapy.


Assuntos
Dependovirus/genética , Terapia Genética , Chaperonas Moleculares/metabolismo , Mucolipidoses/terapia , Recombinação Genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout
5.
bioRxiv ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38826426

RESUMO

Neuraminidase 1 (Neu1) cleaves terminal sialic acids from sialoglycoproteins in endolysosomes and at the plasma membrane. As such, Neu1 regulates immune cells, primarily those of the monocytic lineage. Here we examined how Neu1 influences microglia by modulating the sialylation of full-length Trem2 (Trem2-FL), a multifunctional receptor that regulates microglial survival, phagocytosis, and cytokine production. When Neu1 was deficient/downregulated, Trem2-FL remained sialylated, accumulated intracellularly, and was excessively cleaved into a C-terminal fragment (Trem2-CTF) and an extracellular soluble domain (sTrem2), enhancing their signaling capacities. Sialylated Trem2-FL (Sia-Trem2-FL) did not hinder Trem2-FL-DAP12-Syk complex assembly but impaired signal transduction through Syk, ultimately abolishing Trem2-dependent phagocytosis. Concurrently, Trem2-CTF-DAP12 complexes dampened NFκB signaling, while sTrem2 propagated Akt-dependent cell survival and NFAT1-mediated production of TNFα and CCL3. Because Neu1 and Trem2 are implicated in neurodegenerative/neuroinflammatory diseases, including Alzheimer disease (AD) and sialidosis, modulating Neu1 activity represents a therapeutic approach to broadly regulate microglia-mediated neuroinflammation.

6.
Cell Rep ; 43(5): 114117, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38630590

RESUMO

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to ß-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.


Assuntos
Sinalização do Cálcio , Retículo Endoplasmático , Gangliosídeo G(M1) , Gangliosidose GM1 , Receptores de N-Metil-D-Aspartato , Animais , Humanos , Camundongos , Cálcio/metabolismo , Membrana Celular/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Gangliosídeo G(M1)/metabolismo , Gangliosidose GM1/metabolismo , Gangliosidose GM1/patologia , Plasticidade Neuronal , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Masculino , Feminino
7.
FEBS Open Bio ; 13(9): 1587-1600, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37014126

RESUMO

Intracellular organelles carry out many of their functions by engaging in extensive interorganellar communication through specialized membrane contact sites (MCSs) formed where two organelles tether to each other or to the plasma membrane (PM) without fusing. In recent years, these ubiquitous membrane structures have emerged as central signaling hubs that control a multitude of cellular pathways, ranging from lipid metabolism/transport to the exchange of metabolites and ions (i.e., Ca2+ ), and general organellar biogenesis. The functional crosstalk between juxtaposed membranes at MCSs relies on a defined composite of proteins and lipids that populate these microdomains in a dynamic fashion. This is particularly important in the nervous system, where alterations in the composition of MCSs have been shown to affect their functions and have been implicated in the pathogenesis of neurodegenerative diseases. In this review, we focus on the MCSs that are formed by the tethering of the endoplasmic reticulum (ER) to the mitochondria, the ER to the endo-lysosomes and the mitochondria to the lysosomes. We highlight how glycosphingolipids that are aberrantly processed/degraded and accumulate ectopically in intracellular membranes and the PM change the topology of MCSs, disrupting signaling pathways that lead to neuronal demise and neurodegeneration. In particular, we focus on neurodegenerative lysosomal storage diseases linked to altered glycosphingolipid catabolism.


Assuntos
Glicoesfingolipídeos , Doenças Neurodegenerativas , Humanos , Glicoesfingolipídeos/metabolismo , Doenças Neurodegenerativas/metabolismo , Membranas Intracelulares/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo
8.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014061

RESUMO

Sialidosis is a glycoprotein storage disease caused by deficiency of the lysosomal sialidase NEU1, which leads to pathogenic accumulation of sialylated glycoproteins and oligosaccharides in tissues and body fluids. The disease belongs to the group of orphan disorders with no therapy currently available. Here, we have tested the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis in a mouse model of the disease. One-month-old Neu1 -/- mice were co-injected with two scAAV2/8 vectors, expressing NEU1 and its chaperone PPCA, and sacrificed at 3 months post-injection. Treated mice were phenotypically indistinguishable from their WT controls. Histopathologically, they showed diminished or absent vacuolization in cells of visceral organs, including the kidney, as well as the choroid plexus and other areas of the brain. This was accompanied by restoration of NEU1 activity in most tissues, reversal of sialyl-oligosacchariduria, and normalization of lysosomal exocytosis in the CSF and serum of treated mice. AAV injection prevented the occurrence of generalized fibrosis, which is a prominent contributor of disease pathogenesis in Neu1 -/- mice and likely in patients. Overall, this therapeutic strategy holds promise for the treatment of sialidosis and may be applicable to adult forms of human idiopathic fibrosis with low NEU1 expression.

9.
bioRxiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503076

RESUMO

High energy-demanding tissues, such as skeletal muscle, require mitochondrial proteostasis to function properly. Two quality-control mechanisms, the ubiquitin proteasome system (UPS) and the release of mitochondria-derived vesicles, safeguard mitochondrial proteostasis. However, whether these processes interact is unknown. Here we show that the E3 ligase CRL5 Ozz , a member of the UPS, and its substrate Alix control the mitochondrial concentration of Slc25A4, a solute carrier that is essential for ATP production. The mitochondria in Ozz -/- or Alix -/- skeletal muscle share overt morphologic alterations (they are supernumerary, swollen, and dysmorphic) and have abnormal metabolomic profiles. We found that CRL5 Ozz ubiquitinates Slc25A4 and promotes its proteasomal degradation, while Alix facilitates SLC25A4 loading into exosomes destined for lysosomal destruction. The loss of Ozz or Alix offsets steady-state levels of Slc25A4, which disturbs mitochondrial metabolism and alters muscle fiber composition. These findings reveal hitherto unknown regulatory functions of Ozz and Alix in mitochondrial proteostasis.

10.
bioRxiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503265

RESUMO

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca 2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca 2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to ß-galactosidase deficiency drastically alters neuronal Ca 2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated NMDAR Ca 2+ channel, thereby increasing Ca 2+ flux, activating ERK signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and exacerbates the generalized neuronal cell death characteristic of GM1-gangliosidosis.

11.
Cells ; 11(16)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36010656

RESUMO

GM1-gangliosidosis is a catastrophic, neurodegenerative lysosomal storage disease caused by a deficiency of lysosomal ß-galactosidase (ß-Gal). The primary substrate of the enzyme is GM1-ganglioside (GM1), a sialylated glycosphingolipid abundant in nervous tissue. Patients with GM1-gangliosidosis present with massive and progressive accumulation of GM1 in the central nervous system (CNS), which leads to mental and motor decline, progressive neurodegeneration, and early death. No therapy is currently available for this lysosomal storage disease. Here, we describe a proof-of-concept preclinical study toward the development of enzyme replacement therapy (ERT) for GM1-gangliosidosis using a recombinant murine ß-Gal fused to the plant lectin subunit B of ricin (mß-Gal:RTB). We show that long-term, bi-weekly systemic injection of mß-Gal:RTB in the ß-Gal-/- mouse model resulted in widespread internalization of the enzyme by cells of visceral organs, with consequent restoration of enzyme activity. Most importantly, ß-Gal activity was detected in several brain regions. This was accompanied by a reduction of accumulated GM1, reversal of neuroinflammation, and decrease in the apoptotic marker caspase 3. These results indicate that the RTB lectin delivery module enhances both the CNS-biodistribution pattern and the therapeutic efficacy of the ß-Gal ERT, with the potential to translate to a clinical setting for the treatment of GM1-gangliosidosis.


Assuntos
Gangliosídeo G(M1) , Gangliosidose GM1 , Animais , Sistema Nervoso Central/metabolismo , Terapia de Reposição de Enzimas , Gangliosidose GM1/tratamento farmacológico , Gangliosidose GM1/genética , Lectinas/uso terapêutico , Camundongos , Distribuição Tecidual , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
12.
Commun Biol ; 5(1): 992, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127469

RESUMO

Rhabdomyosarcoma, the most common pediatric sarcoma, has no effective treatment for the pleomorphic subtype. Still, what triggers transformation into this aggressive phenotype remains poorly understood. Here we used Ptch1+/-/ETV7TG/+/- mice with enhanced incidence of rhabdomyosarcoma to generate a model of pleomorphic rhabdomyosarcoma driven by haploinsufficiency of the lysosomal sialidase neuraminidase 1. These tumors share mostly features of embryonal and some of alveolar rhabdomyosarcoma. Mechanistically, we show that the transforming pathway is increased lysosomal exocytosis downstream of reduced neuraminidase 1, exemplified by the redistribution of the lysosomal associated membrane protein 1 at the plasma membrane of tumor and stromal cells. Here we exploit this unique feature for single cell analysis and define heterogeneous populations of exocytic, only partially differentiated cells that force tumors to pleomorphism and promote a fibrotic microenvironment. These data together with the identification of an adipogenic signature shared by human rhabdomyosarcoma, and likely fueling the tumor's metabolism, make this model of pleomorphic rhabdomyosarcoma ideal for diagnostic and therapeutic studies.


Assuntos
Neuraminidase , Rabdomiossarcoma , Animais , Haploinsuficiência , Humanos , Proteína 1 de Membrana Associada ao Lisossomo , Lisossomos/metabolismo , Camundongos , Neuraminidase/genética , Neuraminidase/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Microambiente Tumoral
13.
Biochim Biophys Acta ; 1802(7-8): 659-72, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20388541

RESUMO

Neuraminidase 1 (NEU1) regulates the catabolism of sialoglycoconjugates in lysosomes. Congenital NEU1 deficiency in children is the basis of sialidosis, a severe neurosomatic disorder in which patients experience a broad spectrum of clinical manifestations varying in the age of onset and severity. Osteoskeletal deformities and muscle hypotonia have been described in patients with sialidosis. Here we present the first comprehensive analysis of the skeletal muscle pathology associated with loss of Neu1 function in mice. In this animal model, skeletal muscles showed an expansion of the epimysial and perimysial spaces, associated with proliferation of fibroblast-like cells and abnormal deposition of collagens. Muscle fibers located adjacent to the expanded connective tissue underwent extensive invagination of their sarcolemma, which resulted in the infiltration of the fibers by fibroblast-like cells and extracellular matrix, and in their progressive cytosolic fragmentation. Both the expanded connective tissue and the juxtaposed infiltrated muscle fibers were strongly positive for lysosomal markers and displayed increased proteolytic activity of lysosomal cathepsins and metalloproteinases. These combined features could lead to abnormal remodeling of the extracellular matrix that could be responsible for sarcolemmal invagination and progressive muscle fiber degeneration, ultimately resulting in an overt atrophic phenotype. This unique pattern of muscle damage, which has never been described in any myopathy, might explain the neuromuscular manifestations reported in patients with the type II severe form of sialidosis. More broadly, these findings point to a potential role of NEU1 in cell proliferation and extracellular matrix remodeling.


Assuntos
Tecido Conjuntivo/fisiopatologia , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Neuraminidase/genética , Animais , Apoptose/genética , Apoptose/fisiologia , Movimento Celular/genética , Proliferação de Células , Tecido Conjuntivo/patologia , Matriz Extracelular/patologia , Matriz Extracelular/fisiologia , Fibroblastos/patologia , Camundongos , Camundongos Knockout , Atrofia Muscular/genética , Atrofia Muscular/fisiopatologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Necrose/genética , Necrose/patologia , Neuraminidase/deficiência , Neuraminidase/fisiologia , Sarcolema/patologia
14.
Front Cell Dev Biol ; 9: 642494, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718382

RESUMO

During primary tumorigenesis isolated cancer cells may undergo genetic or epigenetic changes that render them responsive to additional intrinsic or extrinsic cues, so that they enter a transitional state and eventually acquire an aggressive, metastatic phenotype. Among these changes is the alteration of the cell metabolic/catabolic machinery that creates the most permissive conditions for invasion, dissemination, and survival. The lysosomal system has emerged as a crucial player in this malignant transformation, making this system a potential therapeutic target in cancer. By virtue of their ubiquitous distribution in mammalian cells, their multifaced activities that control catabolic and anabolic processes, and their interplay with other organelles and the plasma membrane (PM), lysosomes function as platforms for inter- and intracellular communication. This is due to their capacity to adapt and sense nutrient availability, to spatially segregate specific functions depending on their position, to fuse with other compartments and with the PM, and to engage in membrane contact sites (MCS) with other organelles. Here we review the latest advances in our understanding of the role of the lysosomal system in cancer progression. We focus on how changes in lysosomal nutrient sensing, as well as lysosomal positioning, exocytosis, and fusion perturb the communication between tumor cells themselves and between tumor cells and their microenvironment. Finally, we describe the potential impact of MCS between lysosomes and other organelles in propelling cancer growth and spread.

15.
Mol Ther Methods Clin Dev ; 20: 191-203, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33426146

RESUMO

Galactosialidosis is a rare lysosomal storage disease caused by a congenital defect of protective protein/cathepsin A (PPCA) and secondary deficiency of neuraminidase-1 and ß-galactosidase. PPCA is a lysosomal serine carboxypeptidase that functions as a chaperone for neuraminidase-1 and ß-galactosidase within a lysosomal multi-protein complex. Combined deficiency of the three enzymes leads to accumulation of sialylated glycoproteins and oligosaccharides in tissues and body fluids and manifests in a systemic disease pathology with severity mostly correlating with the type of mutation(s) and age of onset of the symptoms. Here, we describe a proof-of-concept, preclinical study toward the development of enzyme replacement therapy for galactosialidosis, using a recombinant human PPCA. We show that the recombinant enzyme, taken up by patient-derived fibroblasts, restored cathepsin A, neuraminidase-1, and ß-galactosidase activities. Long-term, bi-weekly injection of the recombinant enzyme in a cohort of mice with null mutation at the PPCA (CTSA) locus (PPCA -/- ), a faithful model of the disease, demonstrated a dose-dependent, systemic internalization of the enzyme by cells of various organs, including the brain. This resulted in restoration/normalization of the three enzyme activities, resolution of histopathology, and reduction of sialyloligosacchariduria. These positive results underscore the benefits of a PPCA-mediated enzyme replacement therapy for the treatment of galactosialidosis.

16.
Mol Ther Methods Clin Dev ; 23: 644-658, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34901309

RESUMO

AAV-mediated gene therapy holds promise for the treatment of lysosomal storage diseases (LSDs), some of which are already in clinical trials. Yet, ultra-rare subtypes of LSDs, such as some glycoproteinoses, have lagged. Here, we report on a long-term safety and efficacy preclinical study conducted in the murine model of galactosialidosis, a glycoproteinosis caused by a deficiency of protective protein/cathepsin A (PPCA). One-month-old Ctsa -/- mice were injected intravenously with a high dose of a self-complementary AAV2/8 vector expressing human CTSA in the liver. Treated mice, examined up to 12 months post injection, appeared grossly indistinguishable from their wild-type littermates. Sustained expression of scAAV2/8-CTSA in the liver resulted in the release of the therapeutic precursor protein in circulation and its widespread uptake by cells in visceral organs and the brain. Increased cathepsin A activity resolved lysosomal vacuolation throughout the affected organs and sialyl-oligosacchariduria. No signs of hyperplasia or inflammation were detected in the liver up to a year of age. Clinical chemistry panels, blood cell counts, and T cell immune responses were normal in all treated animals. These results warrant a close consideration of this gene therapy approach for the treatment of galactosialidosis, an orphan disease with no cure in sight.

17.
Bio Protoc ; 10(10): e3629, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659302

RESUMO

Expansion of fibrous connective tissue and abnormal deposition of extracellular matrix (ECM) are at the basis of many fibrotic diseases. Fibrosis can occur in response to both physiological and pathological cues, including wound healing, tissue remodeling/repair and inflammation. Chronic fibrosis can lead to severe tissue damage, organ failure and death. Assessing the extent of organ fibrosis is crucial for accurate diagnosis of this condition. The use of Masson's trichrome staining of tissue sections from skeletal muscle is a fast method for detection of morphological alterations indicative of a fibrotic phenotype in this organ. This staining method detects the extent of collagen fibers deposition and, because it employs the combination of three dyes, can also distinguish muscle fibers (red), from collagen (blue) and nuclei (black), simultaneously.

18.
Bio Protoc ; 10(7): e3576, 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659546

RESUMO

Exosomes are dynamic nanovesicles secreted by virtually all cells and are present in all biological fluids. Given their highly heterogeneous content exosomes have been implicated in many physiological and pathological processes that they exert by influencing cell-cell and cell-ECM communication. In recent years an increasing number of methods have been established for the purification and characterization of exosomes. These include ultracentrifugation, ultrafiltration, size exclusion chromatography, immune capture and precipitation using a proprietary polymer. Here, we provide a protocol based on differential ultracentrifugation and sucrose density gradients tailored for the isolation of crude and ultra-pure exosomes from primary fibroblast cultures derived from adult mouse skeletal muscle. This protocol can be adapted and modified for the isolation and characterization of exosomes from a variety of tissues and bodily fluids.

19.
J Vis Exp ; (159)2020 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-32478721

RESUMO

Exosomes are small extracellular vesicles released by virtually all cells and secreted in all biological fluids. Many methods have been developed for the isolation of these vesicles, including ultracentrifugation, ultrafiltration, and size exclusion chromatography. However, not all are suitable for large scale exosome purification and characterization. Outlined here is a protocol for establishing cultures of primary fibroblasts isolated from adult mouse skeletal muscles, followed by purification and characterization of exosomes from the culture media of these cells. The method is based on the use of sequential centrifugation steps followed by sucrose density gradients. Purity of the exosomal preparations is then validated by western blot analyses using a battery of canonical markers (i.e., Alix, CD9, and CD81). The protocol describes how to isolate and concentrate bioactive exosomes for electron microscopy, mass spectrometry, and uptake experiments for functional studies. It can easily be scaled up or down and adapted for exosome isolation from different cell types, tissues, and biological fluids.


Assuntos
Exossomos/ultraestrutura , Fibroblastos , Músculo Esquelético/citologia , Animais , Células Cultivadas , Camundongos
20.
J Clin Med ; 9(3)2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143456

RESUMO

Congenital deficiency of the lysosomal sialidase neuraminidase 1 (NEU1) causes the lysosomal storage disease, sialidosis, characterized by impaired processing/degradation of sialo-glycoproteins and sialo-oligosaccharides, and accumulation of sialylated metabolites in tissues and body fluids. Sialidosis is considered an ultra-rare clinical condition and falls into the category of the so-called orphan diseases, for which no therapy is currently available. In this study we aimed to identify potential therapeutic modalities, targeting primarily patients affected by type I sialidosis, the attenuated form of the disease. We tested the beneficial effects of a recombinant protective protein/cathepsin A (PPCA), the natural chaperone of NEU1, as well as pharmacological and dietary compounds on the residual activity of mutant NEU1 in a cohort of patients' primary fibroblasts. We observed a small, but consistent increase in NEU1 activity, following administration of all therapeutic agents in most of the fibroblasts tested. Interestingly, dietary supplementation of betaine, a natural amino acid derivative, in mouse models with residual NEU1 activity mimicking type I sialidosis, increased the levels of mutant NEU1 and resolved the oligosacchariduria. Overall these findings suggest that carefully balanced, unconventional dietary compounds in combination with conventional therapeutic approaches may prove to be beneficial for the treatment of sialidosis type I.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA