Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(3): 1190-1199, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37876351

RESUMO

PURPOSE: Several reconstruction methods for MR-based electrical properties tomography (EPT) have been developed. However, the lack of common data makes it difficult to objectively compare their performances. This is, however, a necessary precursor for standardizing and introducing this technique in the clinical setting. To enable objective comparison of the performances of reconstruction methods and provide common data for their training and testing, we created ADEPT, a database of simulated data for brain MR-EPT reconstructions. METHODS: ADEPT is a database containing in silico data for brain EPT reconstructions. This database was created from 25 different brain models, with and without tumors. Rigid geometric augmentations were applied, and different electrical properties were assigned to white matter, gray matter, CSF, and tumors to generate 120 different brain models. These models were used as input for finite-difference time-domain simulations in Sim4Life, used to compute the electromagnetic fields needed for MR-EPT reconstructions. RESULTS: Electromagnetic fields from 84 healthy and 36 tumor brain models were simulated. The simulated fields relevant for MR-EPT reconstructions (transmit and receive RF fields and transceive phase) and their ground-truth electrical properties are made publicly available through ADEPT. Additionally, nonattainable fields such as the total magnetic field and the electric field are available upon request. CONCLUSION: ADEPT will serve as reference database for objective comparisons of reconstruction methods and will be a first step toward standardization of MR-EPT reconstructions. Furthermore, it provides a large amount of data that can be exploited to train data-driven methods. It can be accessed from  https://doi.org/10.34894/V0HBJ8.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias , Humanos , Condutividade Elétrica , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Tomografia/métodos , Imagens de Fantasmas , Algoritmos
2.
Magn Reson Med ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852180

RESUMO

PURPOSE: In MR electrical properties tomography (MR-EPT), electrical properties (EPs, conductivity and permittivity) are reconstructed from MR measurements. Phantom measurements are important to characterize the performance of MR-EPT reconstruction methods, since they allow knowledge of reference EPs values. To assess reconstruction methods in a more realistic scenario, it is important to test the methods using phantoms with realistic shapes, internal structures, and dielectric properties. In this work, we present a 3D printing procedure for the creation of realistic brain-like phantoms to benchmark MR-EPT reconstructions. METHODS: We created two brain-like geometries with three different compartments using 3D printing. The first geometry was filled once, while the second geometry was filled three times with different saline-gelatin solutions, resulting in a total of four phantoms with different EPs. The saline solutions were characterized using a probe. 3D MR-EPT reconstructions were performed from MR measurements at 3T. The reconstructed conductivity values were compared to reference values of the saline-gelatin solutions. The measured fields were also compared to simulated fields using the same phantom geometry and electrical properties. RESULTS: The measured fields were consistent with simulated fields. Reconstructed conductivity values were consistent with the reference (probe) conductivity values. This indicated the suitability of such phantoms for benchmarking MR-EPT reconstructions. CONCLUSION: We presented a new workflow to 3D print realistic brain-like phantoms in an easy and affordable way. These phantoms are suitable to benchmark MR-EPT reconstructions, but can also be used for benchmarking other quantitative MR methods.

3.
Gynecol Oncol ; 187: 113-119, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759517

RESUMO

OBJECTIVE: The majority of high-grade serous carcinomas (HGSC) of the ovary, fallopian tube, and peritoneum arise from the precursor lesion called serous tubal intraepithelial carcinoma (STIC). It has been postulated that cells from STICs exfoliate into the peritoneal cavity and give rise to peritoneal HGSC several years later. While co-existent STICs and HGSCs have been reported to share similarities in their mutational profiles, clonal relationship between temporally distant STICs and HGSCs have been infrequently studied and the natural history of STICs remains poorly understood. METHODS: We performed focused searches in two national databases from the Netherlands and identified a series of BRCA1/2 germline pathogenic variant (GPV) carriers (n = 7) who had STIC, and no detectable invasive carcinoma, at the time of their risk-reducing salpingo-oophorectomy (RRSO), and later developed peritoneal HGSC. The clonal relationship between these STICs and HGSCs was investigated by comparing their genetic mutational profile by performing next-generation targeted sequencing. RESULTS: Identical pathogenic mutations and loss of heterozygosity of TP53 were identified in the STICs and HGSCs of five of the seven patients (71%), confirming the clonal relationship of the lesions. Median interval for developing HGSC after RRSO was 59 months (range: 24-118 months). CONCLUSION: Our results indicate that cells from STIC can shed into the peritoneal cavity and give rise to HGSC after long lag periods in BRCA1/2 GPV carriers, and argues in favor of the hypothesis that STIC lesions may metastasize.

4.
Tijdschr Psychiatr ; 66(2): 70-75, 2024.
Artigo em Holandês | MEDLINE | ID: mdl-38512144

RESUMO

Background The prevalence of smoking among patients with psychiatric disorders is 3-4 times higher than the general population. However, smoking is still permitted in many psychiatric clinics. The National Prevention Agreement (2018) mandates that all psychiatric wards be smoke-free by 2025. The UMC Utrecht clinics have been smoke-free since November 2020. Aim To examine healthcare workers’ attitudes before and after implementing the smoke-free policy. Method In an observational study with quantitative data analysis, data were collected in one center from healthcare workers in psychiatry departments with surveys. We collected demographic information, smoking status, attitudes towards the smoke-free policy, and its impact on patients and care. Incidents of aggression were prospectively recorded and reported in the MAP (aggression incidents in patient care). Results Out of 172 healthcare workers invited to participate, 30% (n = 52) completed the pre-implementation survey, and 20% (n = 34) completed the post-implementation survey. Prior to implementation, 62% (n = 32/52) of healthcare workers had a positive attitude towards the smoke-free policy, which increased to 77% (n = 26/34) post-implementation. Expectations of increased aggression incidents were reported by 62% (n = 32/52) during the pre-implementation phase. The number of aggression incidents was 46 in the one-year period before implementation (November 2019 – February 2020) and 45 incidents after implementation (November 2020 – February 2021). Conclusion This study supports the implementation of a smoke-free policy in psychiatric clinics due to the lack of a significant increase in aggression incidents. Healthcare workers perceived this outcome and observed quicker granting of ‘green’ freedoms.


Assuntos
Psiquiatria , Política Antifumo , Humanos , Agressão , Atitude do Pessoal de Saúde , Pessoal de Saúde
5.
Tijdschr Psychiatr ; 63(11): 775-781, 2021.
Artigo em Holandês | MEDLINE | ID: mdl-34851516

RESUMO

BACKGROUND: Conspiracy theories are popular during the COVID-19 pandemic. Conspiratorial thinking is characterised by the strong conviction that a certain situation that one sees as unjust is the result of a deliberate conspiracy of a group of people with bad intentions. Conspiratorial thinking appears to have many similarities with paranoid delusions. AIM: To explore the nature, consequences, and social-psychological dimensions of conspiratorial thinking, and describe similarities and differences with paranoid delusions. METHOD: Critically assessing relevant literature about conspiratorial thinking and paranoid delusions. RESULTS: Conspiratorial thinking meets epistemic, existential, and social needs. It provides clarity in uncertain times and connection with an in-group of like-minded people. Both conspiratorial thinking and paranoid delusions involve an unjust, persistent, and sometimes bizarre conviction. Unlike conspiracy theorists, people with a paranoid delusion are almost always the only target of the presumed conspiracy, and they usually stand alone in their conviction. Furthermore, conspiracy theories are not based as much on unusual experiences of their inner self, reality, or interpersonal contacts. CONCLUSIONS Conspirational thinking is common in uncertain circumstances. It gives grip, certainty, moral superiority and social support. Extreme conspirational thinking seems to fit current psychiatric definitions of paranoid delusions, but there are also important differences. To make a distinction with regard to conspiratorial thinking, deepening of conventional definitions of delusions is required. Instead of the strong focus on the erroneous content of delusions, more attention should be given to the underlying idiosyncratic, changed way of experiencing reality.


Assuntos
COVID-19 , Transtornos Mentais , Delusões , Humanos , Pandemias , SARS-CoV-2
6.
Ned Tijdschr Tandheelkd ; 128(11): 539-541, 2021 Nov.
Artigo em Holandês | MEDLINE | ID: mdl-34747163

RESUMO

Green tooth discoloration can have several causes. From the patient history of the two-year-old with green tooth discoloration clear causal relationships can be identified. The pathological cause is an increase in bilirubin levels for an extended period of time. Determining the extent of tooth development in combination with the increase in bilirubin levels makes it possible to estimate the degree and pattern of green tooth discoloration. If the increase in bilirubin levels is short-lived, it is possible the permanent dentition will not be affected.


Assuntos
Descoloração de Dente , Pré-Escolar , Dentição Permanente , Humanos , Masculino , Odontogênese , Descoloração de Dente/diagnóstico , Descoloração de Dente/etiologia
7.
Magn Reson Med ; 83(2): 695-711, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31483521

RESUMO

PURPOSE: Local specific absorption rate (SAR) cannot be measured and is usually evaluated by offline numerical simulations using generic body models that of course will differ from the patient's anatomy. An additional safety margin is needed to include this intersubject variability. In this work, we present a deep learning-based method for image-based subject-specific local SAR assessment. We propose to train a convolutional neural network to learn a "surrogate SAR model" to map the relation between subject-specific B1+ maps and the corresponding local SAR. METHOD: Our database of 23 subject-specific models with an 8-transmit channel body array for prostate imaging at 7 T was used to build 5750 training samples. These synthetic complex B1+ maps and local SAR distributions were used to train a conditional generative adversarial network. Extra penalization for local SAR underestimation errors was included in the loss function. In silico and in vivo validation were performed. RESULTS: In silico cross-validation shows a good qualitative and quantitative match between predicted and ground-truth local SAR distributions. The peak local SAR estimation error distribution shows a mean overestimation error of 15% with 13% probability of underestimation. The higher accuracy of the proposed method allows the use of less conservative safety factors compared with standard procedures. In vivo validation shows that the method is applicable with realistic measurement data with impressively good qualitative and quantitative agreement to simulations. CONCLUSION: The proposed deep learning method allows online image-based subject-specific local SAR assessment. It greatly reduces the uncertainty in current state-of-the-art SAR assessment methods, reducing the time in the examination protocol by almost 25%.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Algoritmos , Simulação por Computador , Bases de Dados Factuais , Voluntários Saudáveis , Humanos , Masculino , Modelos Estatísticos , Redes Neurais de Computação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Razão Sinal-Ruído
9.
Magn Reson Med ; 82(6): 2236-2247, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31317566

RESUMO

PURPOSE: The noise navigator is a passive way to detect physiological motion occurring in a patient through thermal noise modulations measured by standard clinical radiofrequency receive coils. The aim is to gain a deeper understanding of the potential and applications of physiologically induced thermal noise modulations. METHODS: Numerical electromagnetic simulations and MR measurements were performed to investigate the relative contribution of tissue displacement versus modulation of the dielectric lung properties over the respiratory cycle, the impact of coil diameter and position with respect to the body. Furthermore, the spatial motion sensitivity of specific noise covariance matrix elements of a receive array was investigated. RESULTS: The influence of dielectric lung property variations on the noise variance is negligible compared to tissue displacement. Coil size affected the thermal noise variance modulation, but the location of the coil with respect to the body had a larger impact. The modulation depth of a 15 cm diameter stationary coil approximately 3 cm away from the chest (i.e. radiotherapy setup) was 39.7% compared to 4.2% for a coil of the same size on the chest, moving along with respiratory motion. A combination of particular noise covariance matrix elements creates a specific spatial sensitivity for motion. CONCLUSIONS: The insight gained on the physical relations governing the noise navigator will allow for optimized use and development of new applications. An optimized combination of elements from the noise covariance matrix offer new ways of performing, e.g. motion tracking.


Assuntos
Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Movimento (Física) , Simulação por Computador , Radiação Eletromagnética , Voluntários Saudáveis , Humanos , Masculino , Músculos/diagnóstico por imagem , Imagens de Fantasmas , Ondas de Rádio , Radioterapia , Razão Sinal-Ruído , Pele/diagnóstico por imagem
10.
Magn Reson Med ; 79(3): 1730-1735, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28593709

RESUMO

PURPOSE: Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal. METHODS: A 2D respiratory motion model was developed based on the MR-derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool. RESULTS: The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM. CONCLUSIONS: The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730-1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Movimento/fisiologia , Respiração , Algoritmos , Humanos , Fígado/diagnóstico por imagem
11.
Magn Reson Med ; 77(4): 1691-1700, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27120403

RESUMO

PURPOSE: Ongoing discussions occur to translate the safety restrictions on MR scanners from specific absorption rate (SAR) to thermal dose. Therefore, this research focuses on the accuracy of thermal simulations in human subjects during an MR exam, which is fundamental information in that debate. METHODS: Radiofrequency (RF) heating experiments were performed on the calves of 13 healthy subjects using a dedicated transmit-receive coil while monitoring the temperature with proton resonance frequency shift (PRFS) thermometry. Subject-specific models and one generic model were used for electromagnetic and thermal simulations using Pennes' bioheat equation, with the blood equilibration constant equaling zero. The simulations were subsequently compared with the experimental results. RESULTS: The mean B1+ equaled 15 µT in the center slice of all volunteers, and 95% of the voxels had errors smaller than 2.8 µT between the simulation and measurement. The intersubject variation in RF power to achieve the required B1+ was 11%. The resulting intersubject variation in median temperature rise was 14%. Thermal simulations underestimated the median temperature increase on average, with 34% in subject-specific models and 28% in the generic model. CONCLUSIONS: Although thermal measures are directly coupled to tissue damage and therefore suitable for RF safety assessment, insecurities in the applied thermal modeling limit their estimation accuracy. Magn Reson Med 77:1691-1700, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Temperatura Corporal/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Músculo Esquelético/fisiologia , Termografia/métodos , Feminino , Humanos , Perna (Membro) , Masculino , Modelos Estatísticos , Músculo Esquelético/anatomia & histologia , Ondas de Rádio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Temperatura
12.
Magn Reson Med ; 78(6): 2449-2459, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28164362

RESUMO

PURPOSE: We introduce a new MR-based method to determine the transfer function (TF) for radiofrequency (RF) safety assessment of active implantable medical devices. Transfer functions are implant-specific measures that relate the incident tangential electric field on an (elongated) implant to a scattered electric field at its tip. The proposed method allows for TF determination with a high spatial resolution in relatively fast measurements without requiring dedicated bench setups from MRI images. THEORY AND METHODS: The principle of reciprocity is used in conjunction with the potential to measure currents with MRI to determine TF. Low-flip angle 3D dual gradient echo MRI data are acquired with an implant as transceive antenna, which requires minimal hardware adaptations. The implant-specific TF is determined from the acquired MRI data, with two different postprocessing methods for comparison. RESULTS: TFs of linear and helical implants can be determined accurately (with a Pearson correlation coefficient R ≥ 0.7 between measurements and simulations, and a difference in field at the tip ΔEtip ≤ 19%) from relatively quick (t < 20 minutes) MRI acquisitions with (several) millimeter spatial resolution. CONCLUSION: Transfer function determination with MRI for RF safety assessment of implantable medical devices is possible. The proposed MR-based method allows for TF determination in more realistic exposure scenarios and solid media. Magn Reson Med 78:2449-2459, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Próteses e Implantes , Animais , Gráficos por Computador , Simulação por Computador , Estimulação Encefálica Profunda , Campos Eletromagnéticos , Radiação Eletromagnética , Humanos , Campos Magnéticos , Imagens de Fantasmas , Ondas de Rádio , Reprodutibilidade dos Testes , Razão Sinal-Ruído
13.
Magn Reson Med ; 77(1): 221-228, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26762855

RESUMO

PURPOSE: Development of a passive respiratory motion sensor based on the noise variance of the receive coil array. METHODS: Respiratory motion alters the body resistance. The noise variance of an RF coil depends on the body resistance and, thus, is also modulated by respiration. For the noise variance monitoring, the noise samples were acquired without and with MR signal excitation on clinical 1.5/3 T MR scanners. The performance of the noise sensor was compared with the respiratory bellow and with the diaphragm displacement visible on MR images. Several breathing patterns were tested. RESULTS: The noise variance demonstrated a periodic, temporal modulation that was synchronized with the respiratory bellow signal. The modulation depth of the noise variance resulting from the respiration varied between the channels of the array and depended on the channel's location with respect to the body. The noise sensor combined with MR acquisition was able to detect the respiratory motion for every k-space read-out line. CONCLUSION: Within clinical MR systems, the respiratory motion can be detected by the noise in receive array. The noise sensor does not require careful positioning unlike the bellow, any additional hardware, and/or MR acquisition. Magn Reson Med 77:221-228, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Imageamento por Ressonância Magnética/métodos , Movimento/fisiologia , Respiração , Processamento de Sinais Assistido por Computador , Algoritmos , Diafragma/diagnóstico por imagem , Diafragma/fisiologia , Humanos , Ondas de Rádio , Razão Sinal-Ruído
14.
NMR Biomed ; 29(9): 1122-30, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26278544

RESUMO

Although the potential of dipole antennas for ultrahigh-field (UHF) MRI is largely recognized, they are still relatively unknown to the larger part of the MRI community. This article intends to provide electromagnetic insight into the general operating principles of dipole antennas by numerical simulations. The major part focuses on a comparison study of dipole antennas and loop coils at frequencies of 128, 298 and 400 MHz. This study shows that dipole antennas are only efficient radiofrequency (RF) coils in the presence of a dielectric and/or conducting load. In addition, the conservative electric fields (E-fields) at the ends of a dipole are negligible in comparison with the induced E-fields in the center. Like loop coils, long dipole antennas perform better than short dipoles for deeply located imaging targets and vice versa. When the optimal element is chosen for each depth, loop coils have higher B1 (+) efficiency for shallow depths, whereas dipole antennas have higher B1 (+) efficiency for large depths. The cross-over point depth decreases with increasing frequency: 11.6, 6.2 and 5.0 cm for 128, 298 and 400 MHz, respectively. For single elements, loop coils demonstrate a better B1 (+) /√SARmax ratio for any target depth and any frequency. However, one example study shows that, in an array setup with loop coil overlap for decoupling, this relationship is not straightforward. The overlapping loop coils may generate increased specific absorption rate (SAR) levels under the overlapping parts of the loops, depending on the drive phase settings. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Modelos Teóricos , Transdutores , Imagem Corporal Total/instrumentação , Animais , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Campos Magnéticos , Imagens de Fantasmas , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
NMR Biomed ; 29(9): 1231-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27191947

RESUMO

Multimodal MRI is the state of the art method for clinical diagnostics and therapy monitoring of the spinal cord, with MRS being an emerging modality that has the potential to detect relevant changes of the spinal cord tissue at an earlier stage and to enhance specificity. Methodological challenges related to the small dimensions and deep location of the human spinal cord inside the human body, field fluctuations due to respiratory motion, susceptibility differences to adjacent tissue such as vertebras and pulsatile flow of the cerebrospinal fluid hinder the clinical application of (1) H MRS to the human spinal cord. Complementary to previous studies that partly addressed these problems, this work aims at enhancing the signal-to-noise ratio (SNR) of (1) H MRS in the human spinal cord. To this end a flexible tight fit high density receiver array and ultra-high field strength (7 T) were combined. A dielectric waveguide and dipole antenna transmission coil allowed for dual channel RF shimming, focusing the RF field in the spinal cord, and an inner-volume saturated semi-LASER sequence was used for robust localization in the presence of B1 (+) inhomogeneity. Herein we report the first 7 T spinal cord (1) H MR spectra, which were obtained in seven independent measurements of 128 averages each in three healthy volunteers. The spectra exhibit high quality (full width at half maximum 0.09 ppm, SNR 7.6) and absence of artifacts and allow for reliable quantification of N-acetyl aspartate (NAA) (NAA/Cr (creatine) 1.31 ± 0.20; Cramér-Rao lower bound (CRLB) 5), total choline containing compounds (Cho) (Cho/Cr 0.32 ± 0.07; CRLB 7), Cr (CRLB 5) and myo-inositol (mI) (mI/Cr 1.08 ± 0.22; CRLB 6) in 7.5 min in the human cervical spinal cord. Thus metabolic information from the spinal cord can be obtained in clinically feasible scan times at 7 T, and its benefit for clinical decision making in spinal cord disorders will be investigated in the future using the presented methodology. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Medula Espinal/metabolismo , Transdutores , Adulto , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Aumento da Imagem/instrumentação , Campos Magnéticos , Masculino , Doses de Radiação , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade , Medula Espinal/anatomia & histologia
16.
Magn Reson Med ; 71(4): 1641-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23788130

RESUMO

PURPOSE: Magnetic resonance imaging of humans at high magnetic field strengths is strongly influenced by the interference of the radiofrequency (RF) electromagnetic field and the body. To minimize this effect, multiple RF sources could be used. A novel setup (called multimode, coaxial waveguide) is proposed that facilitates RF shimming based on the traveling waves. METHODS: The multimode, coaxial waveguide combines the coaxial waveguide, cylindrical waveguide, high dielectric permittivity lining, and eight radial stub antennas. Each antenna excites multiple waveguide modes. Based on modes orthogonality, a method was devised to decompose an excitation pattern of single stub antenna into waveguide modes. RESULTS: The number of modes present in the excitation pattern of a single stub antenna increased with the higher effective permittivity of the dielectric lining. Thus, RF shimming performance of the setup was improved. An average homogeneity of 10% was demonstrated for a single slice of each principle plane in the human head at 7 T. CONCLUSION: Traveling wave RF shimming is feasible both in axial and longitudinal directions and is improved with an increased amount of orthogonal waveguide modes. Nevertheless, with the currently available RF amplifiers at 7 T, the performance of the setup is limited to low flip angles.


Assuntos
Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/instrumentação , Transdutores , Imagem Corporal Total/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Campos Magnéticos , Imagens de Fantasmas , Ondas de Rádio , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
17.
Nanotechnology ; 25(9): 094004, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24521927

RESUMO

Printed Electronics is a rapidly developing sector in the electronics industry, in which nanostructured materials are playing an increasingly important role. In particular, inks containing dispersions of semiconducting nanoparticles, can form nanocomposite materials with unique electronic properties when cured. In this study we have extended on our previous studies of functional nanoparticle electronic inks, with the development of a solvent-based silicon ink for printed electronics which is compatible with existing silver inks, and with the investigation of other metal nanoparticle based inks. It is shown that both solvent-based and water-based inks can be used for both silver conductors and semiconducting silicon, and that qualitatively there is no difference in the electronic properties of the materials printed with a soluble polymer binder to when an acrylic binder is used.

18.
Microsc Res Tech ; 87(3): 495-505, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37929605

RESUMO

Pluripotent stem cell-derived kidney organoids hold great promise as a potential auxiliary transplant tissue for individuals with end-stage renal disease and as a platform for studying kidney diseases and drug discovery. To establish accurate models, it is crucial to thoroughly characterize the morphological features and maturation stages of the cellular components within these organoids. Nephrons, the functional units of the kidney, possess distinct morphological structures that directly correlate with their specific functions. High spatial resolution imaging emerges as a powerful technique for capturing ultrastructural details that may go unnoticed with other methods such as immunofluorescent imaging and scRNA sequencing. In our study, we have applied software capable of seamlessly stitching virtual slides generated from electron microscopy, resulting in high-definition overviews of tissue slides. With this technology, we can comprehensively characterize the development and maturation of kidney organoids when transplanted under the renal capsule of mice. These organoids exhibit advanced ultrastructural developments upon transplantation, including the formation of the filtration barrier in the renal corpuscle, the presence of microvilli in the proximal tubule, and various types of cell sub-segmentation in the connecting tubule similarly to those seen in the adult kidney. Such ultrastructural characterization provides invaluable insights into the structural development and functional morphology of nephron segments within kidney organoids and how to advance them by interventions such as a transplantation. Research Highlights High-resolution imaging is crucial to determine morphological maturation of hiPSC-derived kidney organoids. Upon transplantation, refined ultrastructural development of nephron segments was observed, such as the development of the glomerular filtration barrier.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Camundongos , Diferenciação Celular , Néfrons/metabolismo , Rim/ultraestrutura
19.
Bone Rep ; 20: 101738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38292932

RESUMO

Background: Abnormalities of the hyoid bone are associated with impairment of oropharyngeal functions including feeding, swallowing, and breathing. Few studies have characterized anatomic abnormalities of the hyoid in patients with Robin sequence (RS), e.g. a less mineralized and voluminous hyoid. The purpose of this study was to compare normal hyoid bone morphology and hyoid bone morphology in children with isolated RS. Methods: Three-dimensional (3D) reconstructions of the hyoid bone were obtained from CT-imaging of children with RS and unaffected controls. A 3D morphable model was constructed using Principal Component Analysis (PCA). Partial least squares - Discriminant Analysis (PLS-DA) and multivariate analysis of variance (MANOVA) were used to characterize and compare hyoid shape differences between patients with RS and an age-matched control group. Results: The study included 23 subjects with RS (mean age 9.8 ± 10.3 months) and 46 age-matched control samples. A less voluminous hyoid was observed for the RS group with a larger lateral divergence of the greater horns compared to controls (MANOVA, p-value<0.001). The first shape variable from the PLS-DA model showed a significant correlation for the observed variance between the two groups (Spearman R = -0.56, p-value<0.001). The control samples and 151 CT-scans of subjects up to age 4 years were used to create a 3D morphable model of normal hyoid shape variation (n = 197, mean age 22.1 ± 13.1 months). For the normal 3D morphable model, a high degree of allometric shape variation was observed along the first principal component. Conclusions: The 3D morphable models provide a comprehensive and quantitative description of variation in normal hyoid bone morphology, and allow detection of distinct differences between patients with isolated RS and controls.

20.
Magn Reson Med ; 70(3): 885-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23044511

RESUMO

Application of travelling wave MR to human body imaging is restricted by the limited peak power of the available RF amplifiers. Nevertheless, travelling wave MR advantages like a large field of view excitation and distant location of transmit elements would be desirable for whole body MRI. In this work, improvement of the B1+ efficiency of travelling wave MR is demonstrated. High permittivity dielectric lining placed next to the scanner bore wall effectively reduces attenuation of the travelling wave in the longitudinal direction and at the same time directs the radial power flow toward the load. First, this is shown with an analytical model of a metallic cylindrical waveguide with the dielectric lining next to the wall and loaded with a cylindrical phantom. Simulations and experiments also reveal an increase of B1+ efficiency in the center of the bore for travelling wave MR with a dielectric lining. Phantom experiments show up to a 2-fold gain in B1+ with the dielectric lining. This corresponds to a 4-fold increase in power efficiency of travelling wave MR. In vivo experiments demonstrate an 8-fold signal-to-noise ratio gain with the dielectric lining. Overall, it is shown that dielectric lining is a constructive method to improve efficacy of travelling wave MR.


Assuntos
Imageamento por Ressonância Magnética/métodos , Humanos , Modelos Teóricos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA