Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; 231(10): 2249-56, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26873862

RESUMO

Skeletal myoblast (SkMB) transplantation has been conducted as a therapeutic strategy for severe heart failure. However, arrhythmogenicity following transplantation remains unsolved. We developed an in vitro model of myoblast transplantation with "patterned" or "randomly-mixed" co-culture of SkMBs and cardiomyocytes enabling subsequent electrophysiological, and arrhythmogenic evaluation. SkMBs were magnetically labeled with magnetite nanoparticles and co-cultured with neonatal rat ventricular myocytes (NRVMs) on multi-electrode arrays. SkMBs were patterned by a magnet beneath the arrays. Excitation synchronicity was evaluated by Ca(2+) imaging using a gene-encoded Ca(2+) indicator, G-CaMP2. In the monoculture of NRVMs (control), conduction was well-organized. In the randomly-mixed co-culture of NRVMs and SkMBs (random group), there was inhomogeneous conduction from multiple origins. In the "patterned" co-culture where an en bloc SKMB-layer was inserted into the NRVM-layer, excitation homogenously propagated although conduction was distorted by the SkMB-area. The 4-mm distance conduction time (CT) in the random group was significantly longer (197 ± 126 ms) than in control (17 ± 3 ms). In the patterned group, CT through NRVM-area did not change (25 ± 3 ms), although CT through the SkMB-area was significantly longer (132 ± 77 ms). The intervals between spontaneous excitation varied beat-to-beat in the random group, while regular beating was recorded in the control and patterned groups. Synchronized Ca(2+) transients of NRVMs were observed in the patterned group, whereas those in the random group were asynchronous. Patterned alignment of SkMBs is feasible with magnetic nanoparticles. Using the novel in vitro model mimicking cell transplantation, it may become possible to predict arrhythmogenicity due to heterogenous cell transplantation. J. Cell. Physiol. 231: 2249-2256, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Técnicas de Cocultura , Ventrículos do Coração/citologia , Nanopartículas de Magnetita/administração & dosagem , Mioblastos Esqueléticos/citologia , Miócitos Cardíacos/citologia , Animais , Arritmias Cardíacas/fisiopatologia , Células Cultivadas , Infarto do Miocárdio/fisiopatologia , Nanotecnologia/métodos , Ratos Wistar
2.
Circ J ; 80(6): 1336-45, 2016 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-27151565

RESUMO

BACKGROUND: Beat-to-beat variability in ventricular repolarization (BVR) associates with increased arrhythmic risk. Proarrhythmic remodeling in the dog with chronic AV-block (CAVB) compromises repolarization reserve and associates with increased BVR, which further increases upon dofetilide infusion and correlates with Torsade de Pointes (TdP) arrhythmias. It was hypothesized that these pro-arrhythmia-associated increases in BVR are induced by beat-to-beat variability in preload. METHODS AND RESULTS: Left ventricular monophasic action potential duration (LVMAPD) was recorded in acute (AAVB) and CAVB dogs, before and after dofetilide infusion. BVR was quantified as short-term variability of LVMAPD. The PQ-interval was controlled by pacing: either a constant or an alternating preload pattern was established, verified by PV-loop. The effect of the stretch-activated channel blocker, streptomycin, on BVR was evaluated in a second CAVB group. At alternating preload only, BVR was increased after proarrhythmic remodeling (0.45±0.14 ms AAVB vs. 2.2±1.1 ms CAVB, P<0.01). At CAVB, but not at AAVB, dofetilide induced significant proarrhythmia. Preload variability augmented the dofetilide-induced BVR increase at CAVB (+1.5±0.8 ms vs. +0.9±0.9 ms, P=0.058). In the second group, the increase in baseline BVR by alternating preload (0.3±0.03 ms to 1.0±0.8 ms, P<0.01) was abolished by streptomycin (0.5±0.2 ms, P<0.05). CONCLUSIONS: In CAVB dogs, the inverse relation between BVR and repolarization reserve originates from an augmented sensitivity of ventricular repolarization to beat-to-beat preload changes. Stretch-activated channels appear to be involved in the mechanism of BVR. (Circ J 2016; 80: 1336-1345).


Assuntos
Arritmias Cardíacas/etiologia , Bloqueio Atrioventricular/fisiopatologia , Torsades de Pointes/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Anestesia , Animais , Cães , Fenetilaminas/administração & dosagem , Fenetilaminas/farmacologia , Risco , Estreptomicina/farmacologia , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA