Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 10(6): e1004415, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945319

RESUMO

Functional links connecting gene transcription and condensin-mediated chromosome condensation have been established in species ranging from prokaryotes to vertebrates. However, the exact nature of these links remains misunderstood. Here we show in fission yeast that the 3' end RNA processing factor Swd2.2, a component of the Cleavage and Polyadenylation Factor (CPF), is a negative regulator of condensin-mediated chromosome condensation. Lack of Swd2.2 does not affect the assembly of the CPF but reduces its association with chromatin. This causes only limited, context-dependent effects on gene expression and transcription termination. However, CPF-associated Swd2.2 is required for the association of Protein Phosphatase 1 PP1(Dis2) with chromatin, through an interaction with Ppn1, a protein that we identify as the fission yeast homologue of vertebrate PNUTS. We demonstrate that Swd2.2, Ppn1 and PP1Dis2 form an independent module within the CPF, which provides an essential function in the absence of the CPF-associated Ssu72 phosphatase. We show that Ppn1 and Ssu72, like Swd2.2, are also negative regulators of condensin-mediated chromosome condensation. We conclude that Swd2.2 opposes condensin-mediated chromosome condensation by facilitating the function of the two CPF-associated phosphatases PP1 and Ssu72.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Acetilação , Hidrolases Anidrido Ácido/genética , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Complexos Multiproteicos/genética , Fosforilação , Terminação da Transcrição Genética
2.
Mol Biol Cell ; 20(24): 5096-105, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19846658

RESUMO

Although critical for spindle checkpoint signaling, the role kinetochores play in anaphase promoting complex (APC) inhibition remains unclear. Here we show that spindle checkpoint proteins are severely depleted from unattached kinetochores in fission yeast cells lacking Bub3p. Surprisingly, a robust mitotic arrest is maintained in the majority of bub3 Delta cells, yet they die, suggesting that Bub3p is essential for successful checkpoint recovery. During recovery, two defects are observed: (1) cells mis-segregate chromosomes and (2) anaphase onset is significantly delayed. We show that Bub3p is required to activate the APC upon inhibition of Aurora kinase activity in checkpoint-arrested cells, suggesting that Bub3p is required for efficient checkpoint silencing downstream of Aurora kinase. Together, these results suggest that spindle checkpoint signals can be amplified in the nucleoplasm, yet kinetochore localization of spindle checkpoint components is required for proper recovery from a spindle checkpoint-dependent arrest.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Fuso Acromático/metabolismo , Anáfase , Segregação de Cromossomos/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mutação/genética
3.
PLoS One ; 2(4): e342, 2007 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-17406666

RESUMO

Mitotic progression is controlled by proteolytic destruction of securin and cyclin. The mitotic E3 ubiquitin ligase, known as the anaphase promoting complex or cyclosome (APC/C), in partnership with its activators Cdc20p and Cdh1p, targets these proteins for degradation. In the presence of defective kinetochore-microtubule interactions, APC/C(Cdc20) is inhibited by the spindle checkpoint, thereby delaying anaphase onset and providing more time for spindle assembly. Cdc20p interacts directly with Mad2p, and its levels are subject to careful regulation, but the precise mode(s) of APC/C( Cdc20) inhibition remain unclear. The mitotic checkpoint complex (MCC, consisting of Mad3p, Mad2p, Bub3p and Cdc20p in budding yeast) is a potent APC/C inhibitor. Here we focus on Mad3p and how it acts, in concert with Mad2p, to efficiently inhibit Cdc20p. We identify and analyse the function of two motifs in Mad3p, KEN30 and KEN296, which are conserved from yeast Mad3p to human BubR1. These KEN amino acid sequences resemble 'degron' signals that confer interaction with APC/C activators and target proteins for degradation. We show that both Mad3p KEN boxes are necessary for spindle checkpoint function. Mutation of KEN30 abolished MCC formation and stabilised Cdc20p in mitosis. In addition, mutation of Mad3-KEN30, APC/C subunits, or Cdh1p, stabilised Mad3p in G1, indicating that the N-terminal KEN box could be a Mad3p degron. To determine the significance of Mad3p turnover, we analysed the consequences of MAD3 overexpression and found that four-fold overproduction of Mad3p led to chromosome bi-orientation defects and significant chromosome loss during recovery from anti-microtubule drug induced checkpoint arrest. In conclusion, Mad3p KEN30 mediates interactions that regulate the proteolytic turnover of Cdc20p and Mad3p, and the levels of both of these proteins are critical for spindle checkpoint signaling and high fidelity chromosome segregation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Fuso Acromático , Sequência de Aminoácidos , Sítios de Ligação , Proteínas Cdc20 , Proteínas de Ciclo Celular/química , Sequência Conservada , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA