Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 407: 115249, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979392

RESUMO

The zebrafish embryo toxicity test (ZFET) is a simple medium-throughput test to inform about (sub)acute lethal effects in embryos. Enhanced analysis through morphological and teratological scoring, and through gene expression analysis, detects developmental effects and the underlying toxicological pathways. Altogether, the ZFET may inform about hazard of chemical exposure for embryonal development in humans, as well as for lethal effects in juvenile and adult fish. In this study, we compared the effects within a series of 12 aliphatic alcohols and related carboxylic acid derivatives (ethanol, acetic acid, 2-methoxyethanol, 2-methoxyacetic acid, 2-butoxyethanol, 2-butoxyacetic acid, 2-hydroxyacetic acid, 2-ethylhexan-1-ol, 2-ethylhexanoic acid, valproic acid, 2-aminoethanol, 2-(2-hydroxyethylamino)ethanol) in ZFET and early life stage (ELS, 28d) exposures, and compared ZFET results with existing results of rat developmental studies and LC50s in adult fish. High correlation scores were observed between compound potencies in ZFET with either ELS, LC50 in fish and developmental toxicity in rats, indicating similar potency ranking among the models. Compounds could be mapped to specific pathways in an adverse outcome pathway (AOP) network through morphological scoring and gene expression analysis in ZFET. Similarity of morphological effects and gene expression profiles in pairs of alcohols with their acid metabolites suggested metabolic activation of the parent alcohols, although with additional, metabolite-independent activity independent for ethanol and 2-ethylhexanol. Overall, phenotypical and gene expression analysis with these compounds indicates that the ZFET can potentially contribute to the AOP for developmental effects in rodents, and to predict toxicity of acute and chronic exposure in advanced life stages in fish.


Assuntos
Ácidos Carboxílicos/toxicidade , Embrião não Mamífero/metabolismo , Álcoois Graxos/toxicidade , Peixe-Zebra/metabolismo , Animais , Desenvolvimento Embrionário/efeitos dos fármacos , Etanol/toxicidade , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hexanóis/toxicidade , Dose Letal Mediana , Gravidez , Ratos , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento
2.
Chem Res Toxicol ; 33(3): 834-848, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32041405

RESUMO

The ongoing developments in chemical risk assessment have led to new concepts building on integration of sophisticated nonanimal models for hazard characterization. Here we explore a pragmatic approach for implementing such concepts, using a case study of three triazole fungicides, namely, flusilazole, propiconazole, and cyproconazole. The strategy applied starts with evaluating the overall level of concern by comparing exposure estimates to toxicological potential, followed by a combination of in silico tools and literature-derived high-throughput screening assays and computational elaborations to obtain insight into potential toxicological mechanisms and targets in the organism. Additionally, some targeted in vitro tests were evaluated for their utility to confirm suspected mechanisms of toxicity and to generate points of departure. Toxicological mechanisms instead of the current "end point-by-end point" approach should guide the selection of methods and assays that constitute a toolbox for next-generation risk assessment. Comparison of the obtained in silico and in vitro results with data from traditional in vivo testing revealed that, overall, nonanimal methods for hazard identification can produce adequate qualitative hazard information for risk assessment. Follow-up studies are needed to further refine the proposed approach, including the composition of the toolbox, toxicokinetics models, and models for exposure assessment.


Assuntos
Fungicidas Industriais/toxicidade , Ensaios de Triagem em Larga Escala , Silanos/toxicidade , Testes de Toxicidade , Triazóis/toxicidade , Humanos , Estrutura Molecular , Medição de Risco
3.
Arch Toxicol ; 92(12): 3549-3564, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30288550

RESUMO

The EU-EuroMix project adopted the strategy of the European Food Safety Authority (EFSA) for cumulative risk assessment, which limits the number of chemicals to consider in a mixture to those that induce a specific toxicological phenotype. These so-called cumulative assessment groups (CAGs) are refined at several levels, including the target organ and specific phenotype. Here, we explore the zebrafish embryo as a test model for quantitative evaluation in one such CAG, skeletal malformations, through exposure to test compounds 0-120 hpf and alcian blue cartilage staining at 120 hpf, focusing on the head skeleton. Reference compounds cyproconazole, flusilazole, metam, and thiram induced distinctive phenotypes in the head skeleton between the triazoles and dithiocarbamates. Of many evaluated parameters, the Meckel's-palatoquadrate (M-PQ) angle was selected for further assessment, based on the best combination of a small confidence interval, an intermediate maximal effect size and a gentle slope of the dose-response curve with cyproconazole and metam. Additional test compounds included in the CAG skeletal malformations database were tested for M-PQ effects, and this set was supplemented with compounds associated with craniofacial malformations or cleft palate to accommodate otherwise organized databases. This additional set included hexaconazole, all-trans-retinoic acid, AM580, CD3254, maneb, pyrimethanil, imidacloprid, pirimiphos-methyl, 2,4-dinitrophenol, 5-fluorouracil, 17alpha-ethynylestradiol (EE2), ethanol, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), PCB 126, methylmercury, boric acid, and MEHP. Most of these compounds produced a dose-response for M-PQ effects. Application of the assay in mixture testing was provided by combined exposure to cyproconazole and TCDD through the isobole method, supporting that in this case the combined effect can be modeled through concentration addition.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Anormalidades Craniofaciais/induzido quimicamente , Relação Dose-Resposta a Droga , Medição de Risco/métodos , Crânio/anormalidades , Crânio/efeitos dos fármacos , Crânio/embriologia , Peixe-Zebra
4.
Toxicol Appl Pharmacol ; 291: 84-96, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26712470

RESUMO

Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin, arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis.


Assuntos
Metilação de DNA/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Compostos Benzidrílicos/toxicidade , Metilação de DNA/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Metais Pesados/toxicidade , Fenóis/toxicidade , Esteroides/toxicidade , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/biossíntese
5.
Int J Mol Sci ; 17(11)2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27827847

RESUMO

Non-communicable diseases (NCDs) are a major cause of premature mortality. Recent studies show that predispositions for NCDs may arise from early-life exposure to low concentrations of environmental contaminants. This developmental origins of health and disease (DOHaD) paradigm suggests that programming of an embryo can be disrupted, changing the homeostatic set point of biological functions. Epigenetic alterations are a possible underlying mechanism. Here, we investigated the DOHaD paradigm by exposing zebrafish to subtoxic concentrations of the ubiquitous contaminant cadmium during embryogenesis, followed by growth under normal conditions. Prolonged behavioral responses to physical stress and altered antioxidative physiology were observed approximately ten weeks after termination of embryonal exposure, at concentrations that were 50-3200-fold below the direct embryotoxic concentration, and interpreted as altered developmental programming. Literature was explored for possible mechanistic pathways that link embryonic subtoxic cadmium to the observed apical phenotypes, more specifically, the probability of molecular mechanisms induced by cadmium exposure leading to altered DNA methylation and subsequently to the observed apical phenotypes. This was done using the adverse outcome pathway model framework, and assessing key event relationship plausibility by tailored Bradford-Hill analysis. Thus, cadmium interaction with thiols appeared to be the major contributor to late-life effects. Cadmium-thiol interactions may lead to depletion of the methyl donor S-adenosyl-methionine, resulting in methylome alterations, and may, additionally, result in oxidative stress, which may lead to DNA oxidation, and subsequently altered DNA methyltransferase activity. In this way, DNA methylation may be affected at a critical developmental stage, causing the observed apical phenotypes.


Assuntos
Cádmio/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Comportamento Exploratório/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética , Adenosina/análogos & derivados , Adenosina/antagonistas & inibidores , Adenosina/metabolismo , Animais , Cátions Bivalentes , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Epigênese Genética/efeitos dos fármacos , Etionina/análogos & derivados , Etionina/antagonistas & inibidores , Etionina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Estresse Oxidativo , Fenótipo , Peixe-Zebra/embriologia
7.
Crit Rev Toxicol ; 44(10): 876-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25058877

RESUMO

Regulatory toxicology urgently needs applicable alternative test systems that reduce animal use, testing time, and cost. European regulation on cosmetic ingredients has already banned animal experimentation for hazard identification, and public awareness drives toward additional restrictions in other regulatory frameworks as well. In addition, scientific progress stimulates a more mechanistic approach of hazard identification. Nevertheless, the implementation of alternative methods is lagging far behind their development. In search for general bottlenecks for the implementation of alternative methods, this manuscript reviews the state of the art as to the development and implementation of 10 diverse test systems in various areas of toxicological hazard assessment. They vary widely in complexity and regulatory acceptance status. The assays are reviewed as to parameters assessed, biological system involved, standardization, interpretation of results, extrapolation to human hazard, position in testing strategies, and current regulatory acceptance status. Given the diversity of alternative methods in many aspects, no common bottlenecks could be identified that hamper implementation of individual alternative assays in general. However, specific issues for the regulatory acceptance and application were identified for each assay. Acceptance of one-in-one replacement of complex in vivo tests by relatively simple in vitro assays is not feasible. Rather, innovative approaches using test batteries are required together with metabolic information and in vitro to in vivo dose extrapolation to convincingly provide the same level of information of current in vivo tests. A mechanistically based alternative approach using the Adverse Outcome Pathway concept could stimulate further (regulatory) acceptance of non-animal tests.


Assuntos
Alternativas aos Testes com Animais/métodos , Substâncias Perigosas/toxicidade , Testes de Toxicidade/métodos , Animais , Modelos Animais de Doenças , Humanos , Medição de Risco
8.
Arch Toxicol ; 88(8): 1573-88, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24535564

RESUMO

Liver injury is the leading cause of drug-induced toxicity. For the evaluation of a chemical compound to induce toxicity, in this case steatosis or fatty liver, it is imperative to identify markers reflective of mechanisms and processes induced upon exposure, as these will be the earliest changes reflective of disease. Therefore, an in vivo mouse toxicogenomics study was completed to identify common pathways, nuclear receptor (NR) binding sites, and genes regulated by three known human steatosis-inducing compounds, amiodarone (AMD), valproic acid (VPA), and tetracycline (TET). Over 1, 4, and 11 days of treatment, AMD induced changes in clinical chemistry parameters and histopathology consistent with steatosis. Common processes and NR binding sites involved in lipid, retinol, and drug metabolism were found for AMD and VPA, but not for TET, which showed no response. Interestingly, the pattern of enrichment of these common pathways and NR binding sites over time was unique to each compound. Eleven biomarkers of steatosis were identified as dose responsive and time sensitive to toxicity for AMD and VPA. Finally, this in vivo mouse study was compared to an AMD rat in vivo, an AMD mouse primary hepatocyte, and a VPA human primary hepatocyte study to identify concordance for steatosis. We conclude that concordance is found on the process level independent of species, model or dose*time point.


Assuntos
Amiodarona/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Modelos Animais de Doenças , Fígado Gorduroso/complicações , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcriptoma , Ácido Valproico/toxicidade , Amiodarona/farmacocinética , Animais , Sítios de Ligação , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Testes de Função Hepática , Masculino , Camundongos Endogâmicos C57BL , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Especificidade da Espécie , Ácido Valproico/farmacocinética
9.
Regul Toxicol Pharmacol ; 69(3): 496-511, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24874798

RESUMO

The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were analytically confirmed for 11 chemicals. Newly fertilised zebrafish eggs (20/concentration and control) were exposed for 96h to chemicals. Four apical endpoints were recorded daily as indicators of acute lethality: coagulation of the embryo, lack of somite formation, non-detachment of the tail bud from the yolk sac and lack of heartbeat. Results (LC50 values for 48/96h exposure) show that the ZFET is a robust method with a good intra- and inter-laboratory reproducibility (CV<30%) for most chemicals and laboratories. The reproducibility was lower (CV>30%) for some very toxic or volatile chemicals, and chemicals tested close to their limit of solubility. The ZFET is now available as OECD Test Guideline 236. Considering the high predictive capacity of the ZFET demonstrated by Belanger et al. (2013) in their retrospective analysis of acute fish toxicity and fish embryo acute toxicity data, the ZFET is ready to be considered for acute fish toxicity for regulatory purposes.


Assuntos
Testes de Toxicidade Aguda/métodos , Poluentes Químicos da Água/toxicidade , Animais , Laboratórios , Dose Letal Mediana , Organização para a Cooperação e Desenvolvimento Econômico , Reprodutibilidade dos Testes , Peixe-Zebra
10.
Toxicol Appl Pharmacol ; 272(1): 161-71, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23774253

RESUMO

The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, d-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity.


Assuntos
Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Teratogênicos/toxicidade , Transcriptoma/genética , Análise de Variância , Animais , Biomarcadores , Cafeína/metabolismo , Cafeína/toxicidade , Carbamazepina/metabolismo , Carbamazepina/toxicidade , Estimulantes do Sistema Nervoso Central/metabolismo , Estimulantes do Sistema Nervoso Central/toxicidade , Embrião não Mamífero/anatomia & histologia , Análise em Microsséries , RNA/biossíntese , RNA/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos
11.
Arch Toxicol ; 87(5): 807-23, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23559145

RESUMO

The whole zebrafish embryo model (ZFE) has proven its applicability in developmental toxicity testing. Since functional hepatocytes are already present from 36 h post fertilization onwards, whole ZFE have been proposed as an attractive alternative to mammalian in vivo models in hepatotoxicity testing. The goal of the present study is to further underpin the applicability of whole ZFE for hepatotoxicity testing by combining histopathology and next-generation sequencing-based gene expression profiling. To this aim, whole ZFE and adult zebrafish were exposed to a set of hepatotoxic reference compounds. Histopathology revealed compound and life-stage-specific effects indicative of toxic injury in livers of whole ZFE and adult zebrafish. Next-generation sequencing (NGS) was used to compare transcript profiles in pooled individual RNA samples of whole ZFE and livers of adult zebrafish. This revealed that hepatotoxicity-associated expression can be detected beyond the overall transcription noise in the whole embryo. In situ hybridization verified liver specificity of selected highly expressed markers in whole ZFE. Finally, cyclosporine A (CsA) was used as an illustrative case to support applicability of ZFE in hepatotoxicity testing by comparing CsA-induced gene expression between ZFE, in vivo mouse liver and HepaRG cells on the levels of single genes, pathways and transcription factors. While there was no clear overlap on single gene level between the whole ZFE and in vivo mouse liver, strong similarities were observed between whole ZFE and in vivo mouse liver in regulated pathways related to hepatotoxicity, as well as in relevant overrepresented transcription factors. In conclusion, both the use of NGS of pooled RNA extracts analysis combined with histopathology and traditional microarray in single case showed the potential to detect liver-related genes and processes within the transcriptome of a whole zebrafish embryo. This supports the applicability of the whole ZFE model for compound-induced hepatotoxicity screening.


Assuntos
Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Xenobióticos/toxicidade , Peixe-Zebra/fisiologia , Alternativas aos Testes com Animais , Animais , Linhagem Celular Tumoral , Ciclosporina/toxicidade , Feminino , Perfilação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização In Situ , Estágios do Ciclo de Vida/efeitos dos fármacos , Fígado/embriologia , Fígado/metabolismo , Masculino , Camundongos , Análise de Sequência de RNA , Especificidade da Espécie
12.
Front Toxicol ; 4: 933197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199824

RESUMO

Next generation risk assessment is defined as a knowledge-driven system that allows for cost-efficient assessment of human health risk related to chemical exposure, without animal experimentation. One of the key features of next generation risk assessment is to facilitate prioritization of chemical substances that need a more extensive toxicological evaluation, in order to address the need to assess an increasing number of substances. In this case study focusing on chemicals in food, we explored how exposure data combined with the Threshold of Toxicological Concern (TTC) concept could be used to prioritize chemicals, both for existing substances and new substances entering the market. Using a database of existing chemicals relevant for dietary exposure we calculated exposure estimates, followed by application of the TTC concept to identify substances of higher concern. Subsequently, a selected set of these priority substances was screened for toxicological potential using high-throughput screening (HTS) approaches. Remarkably, this approach resulted in alerts for a selection of substances that are already on the market and represent relevant exposure in consumers. Taken together, the case study provides proof-of-principle for the approach taken to identify substances of concern, and this approach can therefore be considered a supportive element to a next generation risk assessment strategy.

13.
Toxicology ; 477: 153262, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35868597

RESUMO

The zebrafish embryo (ZFE) is a promising alternative non-rodent model in toxicology, and initial studies suggested its applicability in detecting hepatic responses related to drug-induced liver injury (DILI). Here, we hypothesize that detailed analysis of underlying mechanisms of hepatotoxicity in ZFE contributes to the improved identification of hepatotoxic properties of compounds and to the reduction of rodents used for hepatotoxicity assessment. ZFEs were exposed to nine reference hepatotoxicants, targeted at induction of steatosis, cholestasis, and necrosis, and effects compared with negative controls. Protein profiles of the individual compounds were generated using LC-MS/MS. We identified differentially expressed proteins and pathways, but as these showed considerable overlap, phenotype-specific responses could not be distinguished. This led us to identify a set of common hepatotoxicity marker proteins. At the pathway level, these were mainly associated with cellular adaptive stress-responses, whereas single proteins could be linked to common hepatotoxicity-associated processes. Applying several stringency criteria to our proteomics data as well as information from other data sources resulted in a set of potential robust protein markers, notably Igf2bp1, Cox5ba, Ahnak, Itih3b.2, Psma6b, Srsf3a, Ces2b, Ces2a, Tdo2b, and Anxa1c, for the detection of adverse responses.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Peixe-Zebra , Animais , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Cromatografia Líquida , Fígado , Proteoma , Proteínas de Ligação a RNA/metabolismo , Espectrometria de Massas em Tandem , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
14.
Environ Health Perspect ; 130(4): 47003, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35394809

RESUMO

BACKGROUND: Humans are exposed to combinations of chemicals. In cumulative risk assessment (CRA), regulatory bodies such as the European Food Safety Authority consider dose addition as a default and sufficiently conservative approach. The principle of dose addition was confirmed previously for inducing craniofacial malformations in zebrafish embryos in binary mixtures of chemicals with either similar or dissimilar modes of action (MOAs). OBJECTIVES: In this study, we explored a workflow to select and experimentally test multiple compounds as a complex mixture with each of the compounds at or below its no observed adverse effect level (NOAEL), in the same zebrafish embryo model. METHODS: Selection of candidate compounds that potentially induce craniofacial malformations was done using in silico methods-structural similarity, molecular docking, and quantitative structure-activity relationships-applied to a database of chemicals relevant for oral exposure in humans via food (EuroMix inventory, n=1,598). A final subselection was made manually to represent different regulatory fields (e.g., food additives, industrial chemicals, plant protection products), different chemical families, and different MOAs. RESULTS: A final selection of eight compounds was examined in the zebrafish embryo model, and craniofacial malformations were observed in embryos exposed to each of the compounds, thus confirming the developmental toxicity as predicted by the in silico methods. When exposed to a mixture of the eight compounds, each at its NOAEL, substantial craniofacial malformations were observed; according to a dose-response analysis, even embryos exposed to a 7-fold dilution of this mixture still exhibited a slight abnormal phenotype. The cumulative effect of the compounds in the mixture was in accordance with dose addition (added doses of the individual compounds after adjustment for relative potencies), despite different MOAs of the compounds involved. DISCUSSION: This case study of a complex mixture inducing craniofacial malformations in zebrafish embryos shows that dose addition can adequately predicted the cumulative effect of a mixture of multiple substances at low doses, irrespective of the (expected) MOA. The applied workflow may be useful as an approach for CRA in general. https://doi.org/10.1289/EHP9888.


Assuntos
Misturas Complexas , Peixe-Zebra , Animais , Alimentos , Humanos , Simulação de Acoplamento Molecular , Medição de Risco
15.
Toxicol Appl Pharmacol ; 250(2): 96-107, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20970440

RESUMO

Hepatic systems toxicology is the integrative analysis of toxicogenomic technologies, e.g., transcriptomics, proteomics, and metabolomics, in combination with traditional toxicology measures to improve the understanding of mechanisms of hepatotoxic action. Hepatic toxicology studies that have employed toxicogenomic technologies to date have already provided a proof of principle for the value of hepatic systems toxicology in hazard identification. In the present review, acetaminophen is used as a model compound to discuss the application of toxicogenomics in hepatic systems toxicology for its potential role in the risk assessment process, to progress from hazard identification towards hazard characterization. The toxicogenomics-based parallelogram is used to identify current achievements and limitations of acetaminophen toxicogenomic in vivo and in vitro studies for in vitro-to-in vivo and interspecies comparisons, with the ultimate aim to extrapolate animal studies to humans in vivo. This article provides a model for comparison of more species and more in vitro models enhancing the robustness of common toxicogenomic responses and their relevance to human risk assessment. To progress to quantitative dose-response analysis needed for hazard characterization, in hepatic systems toxicology studies, generation of toxicogenomic data of multiple doses/concentrations and time points is required. Newly developed bioinformatics tools for quantitative analysis of toxicogenomic data can aid in the elucidation of dose-responsive effects. The challenge herein is to assess which toxicogenomic responses are relevant for induction of the apical effect and whether perturbations are sufficient for the induction of downstream events, eventually causing toxicity.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Toxicogenética/métodos , Acetaminofen/administração & dosagem , Animais , Biologia Computacional/métodos , Relação Dose-Resposta a Droga , Humanos , Medição de Risco/métodos , Testes de Toxicidade/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-34206423

RESUMO

Humans are exposed daily to complex mixtures of chemical substances via food intake, inhalation, and dermal contact. Developmental neurotoxicity is an understudied area and entails one of the most complex areas in toxicology. Animal studies for developmental neurotoxicity (DNT) are hardly performed in the context of regular hazard studies, as they are costly and time consuming and provide only limited information as to human relevance. There is a need for a combination of in vitro and in silico tests for the assessment of chemically induced DNT in humans. The zebrafish (Danio rerio) embryo (ZFE) provides a powerful model to study DNT because it shows fast neurodevelopment with a large resemblance to the higher vertebrate, including the human system. One of the suitable readouts for DNT testing in the zebrafish is neurobehaviour (stimulus-provoked locomotion) since this provides integrated information on the functionality and status of the entire nervous system of the embryo. In the current study, environmentally relevant pharmaceuticals and their mixtures were investigated using the zebrafish light-dark transition test. Zebrafish embryos were exposed to three neuroactive compounds of concern, carbamazepine (CBZ), fluoxetine (FLX), and venlafaxine (VNX), as well as their main metabolites, carbamazepine 10,11-epoxide (CBZ 10,11E), norfluoxetine (norFLX), and desvenlafaxine (desVNX). All the studied compounds, except CBZ 10,11E, dose-dependently inhibited zebrafish locomotor activity, providing a distinct behavioural phenotype. Mixture experiments with these pharmaceuticals identified that dose addition was confirmed for all the studied binary mixtures (CBZ-FLX, CBZ-VNX, and VNX-FLX), thereby supporting the zebrafish embryo as a model for studying the cumulative effect of chemical mixtures in DNT. This study shows that pharmaceuticals and a mixture thereof affect locomotor activity in zebrafish. The test is directly applicable in environmental risk assessment; however, further studies are required to assess the relevance of these findings for developmental neurotoxicity in humans.


Assuntos
Síndromes Neurotóxicas , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Escala de Avaliação Comportamental , Embrião não Mamífero , Humanos , Síndromes Neurotóxicas/etiologia , Peixe-Zebra
17.
Toxicology ; 458: 152843, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34186166

RESUMO

Adverse outcome pathway (AOP) is a conceptual framework that links a molecular initiating event (MIE) via intermediate key events (KEs) with adverse effects (adverse outcomes, AO) relevant for risk assessment, through defined KE relationships (KERs). The aim of the present work is to describe a linear AOP, supported by experimental data, for skeletal craniofacial defects as the AO. This AO was selected in view of its relative high incidence in humans and the suspected relation to chemical exposure. We focused on inhibition of CYP26, a retinoic acid (RA) metabolizing enzyme, as MIE, based on robust previously published data. Conazoles were selected as representative stressors. Intermediate KEs are RA disbalance, aberrant HOX gene expression, disrupted specification, migration, and differentiation of neural crest cells, and branchial arch dysmorphology. We described the biological basis of the postulated events and conducted weight of evidence (WoE) assessments. The biological plausibility and the overall empirical evidence were assessed as high and moderate, respectively, the latter taking into consideration the moderate evidence for concordance of dose-response and temporal relationships. Finally, the essentiality assessment of the KEs, considered as high, supported the robustness of the presented AOP. This AOP, which appears of relevance to humans, thus contributes to mechanistic underpinning of selected test methods, thereby supporting their application in integrated new approach test methodologies and strategies and application in a regulatory context.


Assuntos
Rotas de Resultados Adversos , Anormalidades Craniofaciais/metabolismo , Tretinoína/metabolismo , Animais , Azóis/toxicidade , Família 26 do Citocromo P450/antagonistas & inibidores , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Crista Neural/anormalidades , Crista Neural/efeitos dos fármacos , Medição de Risco
18.
Toxics ; 9(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34678946

RESUMO

Tobacco use is the leading cause of preventable death worldwide and is highly addictive. Nicotine is the main addictive compound in tobacco, but less is known about other components and additives that may contribute to tobacco addiction. The zebrafish embryo (ZFE) has been shown to be a good model to study the toxic effects of chemicals on the neurological system and thus may be a promising model to study behavioral markers of nicotine effects, which may be predictive for addictiveness. We aimed to develop a testing protocol to study nicotine tolerance in ZFE using a locomotion test with light-dark transitions as behavioral trigger. Behavioral experiments were conducted using three exposure paradigms: (1) Acute exposure to determine nicotine's effect and potency. (2) Pre-treatment with nicotine dose range followed by a single dose of nicotine, to determine which pre-treatment dose is sufficient to affect the potency of acute nicotine. (3) Pre-treatment with a single dose combined with acute exposure to a dose range to confirm the hypothesized decreased potency of the acute nicotine exposure. These exposure paradigms showed that (1) acute nicotine exposure decreased ZFE activity in response to dark conditions in a dose-dependent fashion; (2) pre-treatment with increasing concentrations dose-dependently reversed the effect of acute nicotine exposure; and (3) a fixed pre-treatment dose of nicotine induced a decreased potency of the acute nicotine exposure. This effect supported the induction of tolerance to nicotine by the pre-treatment, likely through neuroadaptation. The interpretation of these effects, particularly in view of prediction of dependence and addictiveness, and suitability of the ZFE model to test for such effects of other compounds than nicotine, are discussed.

19.
Food Chem Toxicol ; 137: 111117, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31927004

RESUMO

A challenge in cumulative risk assessment is to model hazard of mixtures. EFSA proposed to only combine chemicals linked to a defined endpoint, in so-called cumulative assessment groups, and use the dose-addition model as a default to predict combined effects. We investigated the effect of binary mixtures of compounds known to cause craniofacial malformations, by assessing the effect in the head skeleton (M-PQ angle) in 120hpf zebrafish embryos. We combined chemicals with similar mode of action (MOA), i.e. the triazoles cyproconazole, triadimefon and flusilazole; next, reference compounds cyproconazole or triadimefon were combined with dissimilar acting compounds, TCDD, thiram, VPA, prochloraz, fenpropimorph, PFOS, or endosulfan. These mixtures were designed as (near) equipotent combinations of the contributing compounds, in a range of cumulative concentrations. Dose-addition was assessed by evaluation of the overlap of responses of each of the 14 tested binary mixtures with those of the single compounds. All 10 test compounds induced an increase of the M-PQ angle, with varying potency and specificity. Mixture responses as predicted by dose-addition did not deviate from the observed responses, supporting dose-addition as a valid assumption for mixture risk assessment. Importantly, dose-addition was found irrespective of MOA of contributing chemicals.


Assuntos
Anormalidades Craniofaciais/veterinária , Doenças dos Peixes/etiologia , Silanos/toxicidade , Triazóis/toxicidade , Peixe-Zebra/embriologia , Animais , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/etiologia , Doenças dos Peixes/embriologia , Peixe-Zebra/anormalidades , Peixe-Zebra/genética
20.
Reprod Toxicol ; 96: 114-127, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553615

RESUMO

Knowledge on mode-of-action (MOA) is required to understand toxicological effects of compounds, notably in the context of risk assessment of mixtures. Such information is generally scarce, and often complicated by the existence of multiple MOAs per compound. Here, MOAs related to developmental craniofacial malformations were derived from literature, and assembled in a MOA network. A selection of gene expression markers was based on these MOAs. Next, these markers were verified by qPCR in zebrafish embryos, after exposure to reference compounds. These were: triazoles for inhibition of retinoic acid (RA) metabolism, AM580 and CD3254 for selective activation of respectively RA-receptor (RAR) and retinoid-X-receptor (RXR), dithiocarbamates for inhibition of lysyl oxidase, TCDD for activation of the aryl-hydrocarbon-receptor (AhR), VPA for inhibition of histone deacetylase (HDAC), and PFOS for activation of peroxisome proliferator-activated receptor-alpha (PPARα). Next, marker gene profiles for these reference compounds were used to map the profiles of test compounds to known MOAs. In this way, 2,4-dinitrophenol matched with the TCDD and RAR profiles, boric acid with RAR, endosulfan with PFOS, fenpropimorph with dithiocarbamates, PCB126 with AhR, and RA with triazoles and RAR profiles. Prochloraz showed no match. Activities of these compounds in ToxCast assays, and in silico analysis of binding affinity to the respective targets showed limited concordance with the marker gene expression profiles, but still confirmed the complex MOA profiles of reference and test compounds. Ultimately, this approach could be used to support modeling of mixture effects based on upfront knowledge of (dis)similarity of MOAs.


Assuntos
Anormalidades Craniofaciais/induzido quimicamente , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Teratogênicos/toxicidade , Animais , Anormalidades Craniofaciais/genética , Relação Dose-Resposta a Droga , Embrião não Mamífero , Feminino , Masculino , Modelos Biológicos , Teratogênicos/classificação , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA