Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
FASEB J ; 35(5): e21546, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817825

RESUMO

Adult neurogenesis occurs particularly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. This continuous addition of neurons to pre-existing neuronal networks is essential for intact cognitive and olfactory functions, respectively. Purinergic signaling modulates adult neurogenesis, however, the role of individual purinergic receptor subtypes in this dynamic process and related cognitive performance is poorly understood. In this study, we analyzed the role of P2Y2 receptor in the neurogenic niches and in related forebrain functions such as spatial working memory and olfaction using mice with a targeted deletion of the P2Y2 receptor (P2Y2-/- ). Proliferation, migration, differentiation, and survival of neuronal precursor cells (NPCs) were analyzed by BrdU assay and immunohistochemistry; signal transduction pathway components were analyzed by immunoblot. In P2Y2-/- mice, proliferation of NPCs in the SGZ and the SVZ was reduced. However, migration, neuronal fate decision, and survival were not affected. Moreover, p-Akt expression was decreased in P2Y2-/- mice. P2Y2-/- mice showed an impaired performance in the Y-maze and a higher latency in the hidden food test. These data indicate that the P2Y2 receptor plays an important role in NPC proliferation as well as in hippocampus-dependent working memory and olfactory function.


Assuntos
Neurogênese , Bulbo Olfatório/patologia , Prosencéfalo/patologia , Receptores Purinérgicos P2Y2/fisiologia , Animais , Movimento Celular , Proliferação de Células , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Bulbo Olfatório/metabolismo , Prosencéfalo/metabolismo
2.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269920

RESUMO

Life on earth has evolved under the influence of regularly recurring changes in the environment, such as the 24 h light/dark cycle. Consequently, organisms have developed endogenous clocks, generating 24 h (circadian) rhythms that serve to anticipate these rhythmic changes. In addition to these circadian rhythms, which persist in constant conditions and can be entrained to environmental rhythms, light drives rhythmic behavior and brain function, especially in nocturnal laboratory rodents. In recent decades, research has made great advances in the elucidation of the molecular circadian clockwork and circadian light perception. This review summarizes the role of light and the circadian clock in rhythmic brain function, with a focus on the complex interaction between the different components of the mammalian circadian system. Furthermore, chronodisruption as a consequence of light at night, genetic manipulation, and neurodegenerative diseases is briefly discussed.


Assuntos
Relógios Circadianos , Fotoperíodo , Animais , Encéfalo , Ritmo Circadiano/genética , Mamíferos , Núcleo Supraquiasmático
3.
Int J Cancer ; 148(1): 226-237, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32700769

RESUMO

Hepatocellular carcinoma (HCC) is highly resistant to anticancer therapy and novel therapeutic strategies are needed. Chronotherapy may become a promising approach because it may improve the efficacy of antimitotic radiation and chemotherapy by considering timing of treatment. To date little is known about time-of-day dependent changes of proliferation and DNA damage in HCC. Using transgenic c-myc/transforming growth factor (TGFα) mice as HCC animal model, we immunohistochemically demonstrated Ki67 as marker for proliferation and γ-H2AX as marker for DNA damage in HCC and surrounding healthy liver (HL). Core clock genes (Per1, Per2, Cry1, Cry2, Bmal 1, Rev-erbα and Clock) were examined by qPCR. Data were obtained from samples collected ex vivo at four different time points and from organotypic slice cultures (OSC). Significant differences were found between HCC and HL. In HCC, the number of Ki67 immunoreactive cells showed two peaks (ex vivo: ZT06 middle of day and ZT18 middle of night; OSC: CT04 and CT16). In ex vivo samples, the number of γ-H2AX positive cells in HCC peaked at ZT18 (middle of the night), while in OSC their number remained high during subjective day and night. In both HCC and HL, clock gene expression showed a time-of-day dependent expression ex vivo but no changes in OSC. The expression of Per2 and Cry1 was significantly lower in HCC than in HL. Our data support the concept of chronotherapy of HCC. OSC may become useful to test novel cancer therapies.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Neoplasias Experimentais/genética , Proteínas Circadianas Period/genética , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Proliferação de Células/genética , Cloretos/administração & dosagem , Cloretos/toxicidade , Cronoterapia , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/terapia , Fotoperíodo , Proteínas Proto-Oncogênicas c-myc/genética , Fator de Crescimento Transformador alfa/genética , Células Tumorais Cultivadas , Compostos de Zinco/administração & dosagem , Compostos de Zinco/toxicidade
4.
J Pineal Res ; 70(3): e12724, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33615553

RESUMO

Cancer-related fatigue (CRF) and stress are common symptoms in cancer patients and represent early side effects of cancer treatment which affect the life quality of the patients. CRF may partly depend on disruption of the circadian rhythm. Locomotor activity and corticosterone rhythms are two important circadian outputs which can be used to analyze possible effects on the circadian function during cancer development and treatment. The present study analyzes the relationship between locomotor activity rhythm, corticosterone levels, hepatocellular carcinoma (HCC) development, and radiotherapy treatment in a mouse model. HCC was induced in mice by single injection of diethylnitrosamine (DEN) and chronic treatment of phenobarbital in drinking water. Another group received chronic phenobarbital treatment only. Tumor bearing animals were divided randomly into four groups irradiated at four different Zeitgeber time points. Spontaneous locomotor activity was recorded continuously; serum corticosterone levels and p-ERK immunoreaction in the suprachiasmatic nucleus (SCN) were investigated. Phenobarbital treated mice showed damped corticosterone levels and a less stable 24 hours activity rhythm as well as an increase in activity during the light phase, reminiscent of sleep disruption. The tumor mice showed an increase in corticosterone level during the inactive phase and decreased activity during the dark phase, reminiscent of CRF. After irradiation, corticosterone levels were further increased and locomotor activity rhythms were disrupted. Lowest corticosterone levels were observed after irradiation during the early light phase; thus, this time might be the best to apply radiotherapy in order to minimize side effects.


Assuntos
Ciclos de Atividade , Comportamento Animal , Carcinoma Hepatocelular/radioterapia , Ritmo Circadiano , Corticosterona/sangue , Neoplasias Hepáticas Experimentais/radioterapia , Locomoção , Núcleo Supraquiasmático/fisiopatologia , Animais , Biomarcadores/sangue , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/fisiopatologia , Cronoterapia , Dietilnitrosamina , Progressão da Doença , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Hepáticas Experimentais/sangue , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Circadianas Period/genética , Fenobarbital , Fosforilação , Núcleo Supraquiasmático/metabolismo , Fatores de Tempo
5.
Brain ; 143(4): 1127-1142, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293668

RESUMO

Chronic disability in multiple sclerosis is linked to neuroaxonal degeneration. 4-aminopyridine (4-AP) is used and licensed as a symptomatic treatment to ameliorate ambulatory disability in multiple sclerosis. The presumed mode of action is via blockade of axonal voltage gated potassium channels, thereby enhancing conduction in demyelinated axons. In this study, we provide evidence that in addition to those symptomatic effects, 4-AP can prevent neuroaxonal loss in the CNS. Using in vivo optical coherence tomography imaging, visual function testing and histologic assessment, we observed a reduction in retinal neurodegeneration with 4-AP in models of experimental optic neuritis and optic nerve crush. These effects were not related to an anti-inflammatory mode of action or a direct impact on retinal ganglion cells. Rather, histology and in vitro experiments indicated 4-AP stabilization of myelin and oligodendrocyte precursor cells associated with increased nuclear translocation of the nuclear factor of activated T cells. In experimental optic neuritis, 4-AP potentiated the effects of immunomodulatory treatment with fingolimod. As extended release 4-AP is already licensed for symptomatic multiple sclerosis treatment, we performed a retrospective, multicentre optical coherence tomography study to longitudinally compare retinal neurodegeneration between 52 patients on continuous 4-AP therapy and 51 matched controls. In line with the experimental data, during concurrent 4-AP therapy, degeneration of the macular retinal nerve fibre layer was reduced over 2 years. These results indicate disease-modifying effects of 4-AP beyond symptomatic therapy and provide support for the design of a prospective clinical study using visual function and retinal structure as outcome parameters.


Assuntos
4-Aminopiridina/farmacologia , Esclerose Múltipla/patologia , Fármacos Neuroprotetores/farmacologia , Neurite Óptica/patologia , Degeneração Retiniana/patologia , Adulto , Idoso , Animais , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células-Tronco Neurais/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Wistar
6.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669004

RESUMO

The circadian rhythms of body functions in mammals are controlled by the circadian system. The suprachiasmatic nucleus (SCN) in the hypothalamus orchestrates subordinate oscillators. Time information is conveyed from the retina to the SCN to coordinate an organism's physiology and behavior with the light/dark cycle. At the cellular level, molecular clockwork composed of interlocked transcriptional/translational feedback loops of clock genes drives rhythmic gene expression. Mice with targeted deletion of the essential clock gene Bmal1 (Bmal1-/-) have an impaired light input pathway into the circadian system and show a loss of circadian rhythms. The red house (RH) is an animal welfare measure widely used for rodents as a hiding place. Red plastic provides light at a low irradiance and long wavelength-conditions which affect the circadian system. It is not known yet whether the RH affects rhythmic behavior in mice with a corrupted circadian system. Here, we analyzed whether the RH affects spontaneous locomotor activity in Bmal1-/- mice under standard laboratory light conditions. In addition, mPER1- and p-ERK-immunoreactions, as markers for rhythmic SCN neuronal activity, and day/night plasma corticosterone levels were evaluated. Our findings indicate that application of the RH to Bmal1-/- abolishes rhythmic locomotor behavior and dampens rhythmic SCN neuronal activity. However, RH had no effect on the day/night difference in corticosterone levels.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Ritmo Circadiano/efeitos da radiação , Fatores de Transcrição ARNTL/genética , Animais , Escala de Avaliação Comportamental , Corticosterona/sangue , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Imuno-Histoquímica , Luz , Locomoção/efeitos da radiação , Masculino , Camundongos , Camundongos Knockout , Proteínas Circadianas Period/metabolismo , Fotoperíodo
7.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360844

RESUMO

ATP and other nucleotides are important glio-/neurotransmitters in the central nervous system. They bind to purinergic P2X and P2Y receptors that are ubiquitously expressed in various brain regions modulating various physiological and pathophysiological processes. P2X receptors are ligand-gated ion channels mediating excitatory postsynaptic responses whereas P2Y receptors are G protein-coupled receptors mediating slow synaptic transmission. A variety of P2X and P2Y subtypes with distinct neuroanatomical localization provide the basis for a high diversity in their function. There is increasing evidence that P2 receptor signaling plays a prominent role in learning and memory and thus, in hippocampal neuronal plasticity. Learning and memory are time-of-day-dependent. Moreover, extracellular ATP shows a diurnal rhythm in rodents. However, it is not known whether P2 receptors have a temporal variation in the hippocampus. This study provides a detailed systematic analysis on spatial and temporal distribution of P2 in the mouse hippocampus. We found distinct spatial and temporal distribution patterns of the P2 receptors in different hippocampal layers. The temporal distribution of P2 receptors can be segregated into two large time domains, the early to mid-day and the mid to late night. This study provides an important basis for understanding dynamic P2 purinergic signaling in the hippocampal glia/neuronal network.


Assuntos
Regulação da Expressão Gênica , Hipocampo/metabolismo , Receptores Purinérgicos P2/genética , Animais , Hipocampo/anatomia & histologia , Masculino , Camundongos , Análise Espaço-Temporal
8.
Glia ; 68(5): 947-962, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31743496

RESUMO

Bmal1 is an essential component of the molecular clockwork, which drives circadian rhythms in cell function. In Bmal1-deficient (Bmal1-/-) mice, chronodisruption is associated with cognitive deficits and progressive brain pathology including astrocytosis indicated by increased expression of glial fibrillary acidic protein (GFAP). However, relatively little is known about the impact of Bmal1-deficiency on astrocyte morphology prior to astrocytosis. Therefore, in this study we analysed astrocyte morphology in young (6-8 weeks old) adult Bmal1-/- mice. At this age, overall GFAP immunoreactivity was not increased in Bmal1-deficient mice. At the ultrastructural level, we found a decrease in the volume fraction of the fine astrocytic processes that cover the hippocampal mossy fiber synapse, suggesting an impairment of perisynaptic processes and their contribution to neurotransmission. For further analyses of actin cytoskeleton, which is essential for distal process formation, we used cultured Bmal1-/- astrocytes. Bmal1-/- astrocytes showed an impaired formation of actin stress fibers. Moreover, Bmal1-/- astrocytes showed reduced levels of the actin-binding protein cortactin (CTTN). Cttn promoter region contains an E-Box like element and chromatin immunoprecipitation revealed that Cttn is a potential Bmal1 target gene. In addition, the level of GTP-bound (active) Rho-GTPase (Rho-GTP) was reduced in Bmal1-/- astrocytes. In summary, our data demonstrate that Bmal1-deficiency affects morphology of the fine astrocyte processes prior to strong upregulation of GFAP, presumably because of impaired Cttn expression and reduced Rho-GTP activation. These morphological changes might result in altered synaptic function and, thereby, relate to cognitive deficits in chronodisruption.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Citoesqueleto de Actina/metabolismo , Astrócitos/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Sinapses/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Cortactina/genética , Cortactina/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Camundongos Knockout , Transmissão Sináptica/fisiologia
9.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092990

RESUMO

The circadian system is an endogenous timekeeping system that synchronizes physiology and behavior with the 24 h solar day. Mice with total deletion of the core circadian clock gene Bmal1 show circadian arrhythmicity, cognitive deficits, and accelerated age-dependent decline in adult neurogenesis as a consequence of increased oxidative stress. However, it is not yet known if the impaired adult neurogenesis is due to circadian disruption or to loss of the Bmal1 gene function. Therefore, we investigated oxidative stress and adult neurogenesis of the two principle neurogenic niches, the hippocampal subgranular zone and the subventricular zone in mice with a forebrain specific deletion of Bmal1 (Bmal1 fKO), which show regular circadian rhythmicity. Moreover, we analyzed the morphology of the olfactory bulb, as well as olfactory function in Bmal1 fKO mice. In Bmal1 fKO mice, oxidative stress was increased in subregions of the hippocampus and the olfactory bulb but not in the neurogenic niches. Consistently, adult neurogenesis was not affected in Bmal1 fKO mice. Although Reelin expression in the olfactory bulb was higher in Bmal1 fKO mice as compared to wildtype mice (Bmal1 WT), the olfactory function was not affected. Taken together, the targeted deletion of Bmal1 in mouse forebrain neurons is associated with a regional increase in oxidative stress and increased Reelin expression in the olfactory bulb but does not affect adult neurogenesis or olfactory function.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos/genética , Hipocampo/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Bulbo Olfatório/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Astrócitos/metabolismo , Escala de Avaliação Comportamental , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Ventrículos Laterais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/genética , Proteína Reelina , Deleção de Sequência , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
10.
J Neuroinflammation ; 16(1): 203, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684959

RESUMO

BACKGROUND: Retinal optical coherence tomography (OCT) is a clinical and research tool in multiple sclerosis, where it has shown significant retinal nerve fiber (RNFL) and ganglion cell (RGC) layer thinning, while postmortem studies have reported RGC loss. Although retinal pathology in experimental autoimmune encephalomyelitis (EAE) has been described, comparative OCT studies among EAE models are scarce. Furthermore, the best practices for the implementation of OCT in the EAE lab, especially with afoveate animals like rodents, remain undefined. We aimed to describe the dynamics of retinal injury in different mouse EAE models and outline the optimal experimental conditions, scan protocols, and analysis methods, comparing these to histology to confirm the pathological underpinnings. METHODS: Using spectral-domain OCT, we analyzed the test-retest and the inter-rater reliability of volume, peripapillary, and combined horizontal and vertical line scans. We then monitored the thickness of the retinal layers in different EAE models: in wild-type (WT) C57Bl/6J mice immunized with myelin oligodendrocyte glycoprotein peptide (MOG35-55) or with bovine myelin basic protein (MBP), in TCR2D2 mice immunized with MOG35-55, and in SJL/J mice immunized with myelin proteolipid lipoprotein (PLP139-151). Strain-matched control mice were sham-immunized. RGC density was counted on retinal flatmounts at the end of each experiment. RESULTS: Volume scans centered on the optic disc showed the best reliability. Retinal changes during EAE were localized in the inner retinal layers (IRLs, the combination of the RNFL and the ganglion cell plus the inner plexiform layers). In WT, MOG35-55 EAE, progressive thinning of IRL started rapidly after EAE onset, with 1/3 of total loss occurring during the initial 2 months. IRL thinning was associated with the degree of RGC loss and the severity of EAE. Sham-immunized SJL/J mice showed progressive IRL atrophy, which was accentuated in PLP-immunized mice. MOG35-55-immunized TCR2D2 mice showed severe EAE and retinal thinning. MBP immunization led to very mild disease without significant retinopathy. CONCLUSIONS: Retinal neuroaxonal damage develops quickly during EAE. Changes in retinal thickness mirror neuronal loss and clinical severity. Monitoring of the IRL thickness after immunization against MOG35-55 in C57Bl/6J mice seems the most convenient model to study retinal neurodegeneration in EAE.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Degeneração Neural/patologia , Neurônios/patologia , Retina/patologia , Tomografia de Coerência Óptica/métodos , Animais , Camundongos , Camundongos Endogâmicos C57BL
11.
Cell Commun Signal ; 17(1): 61, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186021

RESUMO

BACKGROUND: The astroglial connexins Cx30 and Cx43 contribute to many important CNS functions including cognitive behaviour, motoric capacity and regulation of the sleep-wake cycle. The sleep wake cycle, is controlled by the circadian system. The central circadian rhythm generator resides in the suprachiasmatic nucleus (SCN). SCN neurons are tightly coupled in order to generate a coherent circadian rhythm. The SCN receives excitatory glutamatergic input from the retina which mediates entrainment of the circadian system to the environmental light-dark cycle. Connexins play an important role in electric coupling of SCN neurons and astrocytic-neuronal signalling that regulates rhythmic SCN neuronal activity. However, little is known about the regulation of Cx30 and Cx43 expression in the SCN, and the role of these connexins in light entrainment of the circadian system and in circadian rhythm generation. METHODS: We analysed time-of-day dependent as well as circadian expression of Cx30 and Cx43 mRNA and protein in the mouse SCN by means of qPCR and immunohistochemistry. Moreover, we analysed rhythmic spontaneous locomotor activity in mice with a targeted deletion of Cx30 and astrocyte specific deletion of Cx43 (DKO) in different light regimes by means of on-cage infrared detectors. RESULTS: Fluctuation of Cx30 protein expression is strongly dependent on the light-dark cycle whereas fluctuation of Cx43 protein expression persisted in constant darkness. DKO mice entrained to the light-dark cycle. However, re-entrainment after a phase delay was slightly impaired in DKO mice. Surprisingly, DKO mice were more resilient to chronodisruption. CONCLUSION: Circadian fluctuation of Cx30 and Cx43 protein expression in the SCN is differently regulated. Cx30 and astroglial Cx43 play a role in rhythm stability and re-entrainment under challenging conditions.


Assuntos
Ritmo Circadiano , Conexina 30/metabolismo , Conexina 43/metabolismo , Locomoção , Núcleo Supraquiasmático/metabolismo , Animais , Conexina 30/genética , Conexina 43/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático/fisiologia
12.
Int J Mol Sci ; 19(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314381

RESUMO

Stroke is a leading cause of disability and death worldwide. There is increasing evidence that occurrence of ischemic stroke is affected by circadian system and sex. However, little is known about the effect of these factors on structural recovery after ischemic stroke. Therefore, we studied infarction in cerebral neocortex of male and female mice with deletion of the clock gene Bmal1 (Bmal1-/-) after focal ischemia induced by photothrombosis (PT). The infarct core size was significantly smaller 14 days (d) as compared to seven days after PT, consistent with structural recovery during the sub-acute phase. However, when sexes were analyzed separately 14 days after PT, infarct core was significantly larger in wild-type (Bmal1+/+) female as compared to male Bmal1+/+ mice, and in female Bmal1+/+, as compared to female Bmal1-/- mice. Volumes of reactive astrogliosis and densely packed microglia closely mirrored the size of infarct core in respective groups. Estradiol levels were significantly higher in female Bmal1-/- as compared to Bmal1+/+ mice. Our data suggests a sex-dependent effect and an interaction between sex and genotype on infarct size, the recruitment of astrocytes and microglia, and a relationship of these cells with structural recovery probably due to positive effects of estradiol during the subacute phase.


Assuntos
Fatores de Transcrição ARNTL/deficiência , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Infarto Cerebral/etiologia , Infarto Cerebral/patologia , Animais , Modelos Animais de Doenças , Estradiol/metabolismo , Feminino , Imunofluorescência , Gliose/metabolismo , Gliose/patologia , Hormônio Liberador de Gonadotropina/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Fatores Sexuais
13.
Int J Mol Sci ; 19(6)2018 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-29865270

RESUMO

Parkinson's disease (PD) is characterized by distinct motor and non-motor symptoms. Sleep disorders are the most frequent and challenging non-motor symptoms in PD patients, and there is growing evidence that they are a consequence of disruptions within the circadian system. PD is characterized by a progressive degeneration of the dorsal vagal nucleus and midbrain dopaminergic neurons together with an imbalance of many other neurotransmitters. Mutations in α-synuclein (SNCA), a protein modulating SNARE complex-dependent neurotransmission, trigger dominantly inherited PD variants and sporadic cases of PD. The A53T SNCA missense mutation is associated with an autosomal dominant early-onset familial PD. To test whether this missense mutation affects the circadian system, we analyzed the spontaneous locomotor behavior of non-transgenic wildtype mice and transgenic mice overexpressing mutant human A53T α-synuclein (A53T). The mice were subjected to entrained- and free-running conditions as well as to experimental jet lag. Furthermore, the vesicular glutamate transporter 2 (VGLUT2) in the suprachiasmatic nucleus (SCN) was analyzed by immunohistochemistry. Free-running circadian rhythm and, thus, circadian rhythm generation, were not affected in A53T mice. A53T mice entrained to the light⁻dark cycle, however, with an advanced phase angle of 2.65 ± 0.5 h before lights off. Moreover, re-entrainment after experimental jet lag was impaired in A53T mice. Finally, VGLUT2 immunoreaction was reduced in the SCN of A53T mice. These data suggest an impaired light entrainment of the circadian system in A53T mice.


Assuntos
Relógios Circadianos , Modelos Animais de Doenças , Locomoção , Doença de Parkinson/metabolismo , Transmissão Sináptica , alfa-Sinucleína/fisiologia , Animais , Regulação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Mutação , Doença de Parkinson/fisiopatologia , Estimulação Luminosa , Regulação para Cima , alfa-Sinucleína/genética
14.
Cell Tissue Res ; 369(3): 579-590, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28547658

RESUMO

Purinergic P2X and P2Y receptors are involved in mediating intercellular signalling via purines such as adenosine triphosphate (ATP). P2X and P2Y receptors have been implicated in numerous body functions including learning, memory and sleep. All of these body functions show time-of-day-dependent variations controlled by the master circadian oscillator located in the suprachiasmatic nucleus (SCN). Evidence exists for a role of purinergic signalling in intercellular coupling within SCN. However, few studies have been performed on the expression of purinergic receptors in SCN. Therefore, we analyse the expression of seven P2X (P2X1-7) and eight P2Y (P2Y1-2, 4, 6, 11-14) receptors in mouse SCN and address their time-of-day-dependent variation by using immunohistochemistry and real-time polymerase chain reaction. At the early light phase, P2X and P2Y receptors show a low to moderate, homogenously distributed immunoreaction throughout SCN. P2Y13 reveals strong immunoreaction in fibres within the core region of SCN. From the fifteen analysed P2 receptors, seven exhibit a time-of-day-dependent variation in SCN. P2X1 immunoreaction is very low in the early light phase with a minor increase at the end of the dark phase. P2X4 immunoreaction strongly increases during the dark phase in soma cells in the core region and in a dense network of fibres in the shell region of SCN. P2X3 immunoreaction is moderately elevated during the dark phase. Conversely, immunoreaction for P2Y2, P2Y12 and P2Y14 moderately increases at the early light phase and P2Y6 immunoreaction displays a moderate increase at the mid-light phase. Thus, this study demonstrates a time-of-day-dependent variation of P2 receptors in mouse SCN.


Assuntos
Regulação da Expressão Gênica , Receptores Purinérgicos/genética , Núcleo Supraquiasmático/metabolismo , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Purinérgicos/metabolismo , Núcleo Supraquiasmático/citologia , Fatores de Tempo
15.
Neuroendocrinology ; 105(1): 35-43, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27490331

RESUMO

BACKGROUND/METHODS: Melatonin, the neurohormone for darkness, mediates photoperiod-dependent changes in physiology and behavior by targeting specific membrane-bound receptors (MT1 and MT2). In the present study, we investigated the impact of MT1 receptor deficiency on feeding behavior, locomotor activity and mRNA expression levels encoding for the polypeptide pro-opiomelanocortin (Pomc) and neuropeptide Y (Npy) in the hypothalamic arcuate nucleus (ARC) and the adenohypophysis [pars distalis (PD) and pars intermedia (PI)] in a comparison between wild-type (WT) and MT1-deficient (MT1-/-) mice. RESULTS: The MT1-/- mice spent significantly more time feeding than the WT mice, while the general locomotor behavior, body weight and the total amount of food consumed did not differ between both genotypes. The nocturnal expression levels of Pomc in the ARC and PD were significantly higher in WT as compared to MT1-/- mice and exogenous melatonin administered during the light phase stimulated Pomc expression in WT mice only. No differences were found between WT and MT1-/- mice with regard to Pomc expression levels in the PI. CONCLUSION: Thus, the MT1-mediated signaling stimulates Pomc expression in a region-specific pattern. Since the MT1-mediated changes in Pomc expression do not elicit direct orexigenic or anorexigenic effects, such effects are obviously mediated by regulatory systems downstream of the Pomc mRNA (e.g. cleavage and release of POMC derivatives), which are independent of MT1 signaling.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Comportamento Alimentar/fisiologia , Regulação da Expressão Gênica/genética , Hipófise/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor MT1 de Melatonina/deficiência , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Comportamento Alimentar/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Melatonina/farmacologia , Camundongos , Camundongos Knockout , Neuropeptídeo Y/metabolismo , Hipófise/efeitos dos fármacos , Pró-Opiomelanocortina/genética , Receptor MT1 de Melatonina/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
16.
Neuroendocrinology ; 103(5): 605-15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26513256

RESUMO

INTRODUCTION: Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. MATERIALS AND METHODS: Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. RESULTS: HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. CONCLUSION: Our data suggest a role of HSF1 in systemic thermoregulation.


Assuntos
Regulação da Temperatura Corporal/genética , Proteínas de Ligação a DNA/deficiência , Regulação da Expressão Gênica/genética , Hipotálamo/metabolismo , Fatores de Transcrição/deficiência , Análise de Variância , Animais , Proteínas de Ligação a DNA/genética , Ingestão de Alimentos/genética , Ensaio de Imunoadsorção Enzimática , Fatores de Transcrição de Choque Térmico , Locomoção/genética , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Prolactina/metabolismo , Tireotropina/metabolismo , Fatores de Transcrição/genética , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Brain Sci ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38539648

RESUMO

Sleep timing is controlled by intrinsic homeostatic and circadian components. The circadian component controls the chronotype, which is defined by the propensity to sleep at a particular clock time. However, sleep timing can be significantly affected by external factors such as the morning alarm clock. In this study, we analysed the timing of deep and REM sleep as well as the composition of REM sleep using Fitbit sleep staging in young healthy adults (n = 59) under real-life conditions. Sleep stage percentiles were correlated with the timing of total sleep in time after sleep onset for the homeostatic component and in clock time for the circadian component. Regarding the circadian component, the phase of total sleep is most strongly associated with the phases of early deep sleep and REM sleep. Furthermore, a stronger phase relationship between deep and REM sleep with total sleep is associated with greater consolidation of REM sleep. Chronotype-dependent sleep loss correlates negatively with the strength of the phase relationship between deep sleep and total sleep. In conclusion, the interaction of the circadian component of sleep timing with the timing of sleep stages is associated with REM sleep quality. In particular, the interaction of the circadian component of sleep timing with deep sleep seems to be more vulnerable to external factors.

18.
Behav Brain Res ; 469: 115051, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38777263

RESUMO

Both dopamine (DA) and serotonin (5-HT) play key roles in numerous functions including motor control, stress response and learning. So far, there is scarce or conflicting evidence about the effects of 5-HT1A and 5-HT2A receptor (R) agonists and antagonists on recognition memory in the rat. This also holds for their effect on cerebral DA as well as 5-HT release. In the present study, we assessed the effects of the 5-HT1AR agonist 8-OH-DPAT and antagonist WAY100,635 and the 5-HT2AR agonist DOI and antagonist altanserin (ALT) on rat behaviors. Moreover, we investigated their impact on monoamine efflux by measuring monoamine transporter binding in various regions of the rat brain. After injection of either 8-OH-DPAT (3 mg/kg), WAY100,635 (0.4 mg/kg), DOI (0.1 mg/kg), ALT (1 mg/kg) or the respective vehicle (saline, DMSO), rats underwent an object and place recognition memory test in the open field. Upon the assessment of object exploration, motor/exploratory parameters and feces excretion, rats were administered the monoamine transporter radioligand N-o-fluoropropyl-2b-carbomethoxy-3b-(4-[123I]iodophenyl)-nortropane ([123I]-FP-CIT; 8.9 ± 2.6 MBq) into the tail vein. Regional radioactivity accumulations in the rat brain were determined post mortem. Compared vehicle, administration of 8-OH-DPAT impaired memory for place, decreased rearing behavior, and increased ambulation as well as head-shoulder movements. DOI administration led to a reduction in rearing behavior but an increase in head-shoulder motility relative to vehicle. Feces excretion was diminished after ALT relative to vehicle. Dopamine transporter (DAT) binding was increased in the caudateputamen (CP), but decreased in the nucleus accumbens (NAC) after 8-OH-DPAT relative to vehicle. Moreover, DAT binding was decreased in the NAC after ALT relative to vehicle. Findings indicate that 5-HT1AR inhibition and 5-HT2AR activation may impair memory for place. Furthermore, results imply associations not only between recognition memory, motor/exploratory behavior and emotionality but also between the respective parameters and the levels of available DA in CP and NAC.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Comportamento Exploratório , Reconhecimento Psicológico , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Masculino , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Ratos , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Emoções/efeitos dos fármacos , Emoções/fisiologia , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Ratos Wistar
19.
Cell Tissue Res ; 353(3): 483-91, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23700151

RESUMO

Neurogenic differentiation factor (NeuroD) is a transcription factor involved in the differentiation of neurons and in the control of energy balance and metabolism. It plays a key role in type 1 and type 2 diabetes. Melatonin is an important rhythmic endocrine signal within the circadian system of mammals and modulates insulin secretion and glucose metabolism. In the mouse pars tuberalis, NeuroD mRNA levels show day/night variation, which is independent of the molecular clock gene mPER1 but depends on the functional melatonin receptor 1 (MT1). So far, little is known about the effect of melatonin on NeuroD synthesis in the gastrointestinal tract. Thus, NeuroD protein levels and cellular localization were analyzed by immunohistochemistry in pancreatic islets and duodenal enteroendocrine cells of MT1- and mPER1-deficienct mice. In addition, the localization of NeuroD-positive cells was analyzed by double-immunofluorescence and confocal laser microscopy. In duodenal enteroendocrine cells and pancreatic islets of WT and PER1-deficient mice, NeuroD immunoreaction showed a peak during the early subjective night. In contrast, this peak was absent in MT1-deficent mice. These data suggest that melatonin, by acting on MT1 receptors, affects NeuroD expression in the gastrointestinal tract and thus might contribute to circadian regulation in metabolic functions.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Duodeno/metabolismo , Células Enteroendócrinas/metabolismo , Ilhotas Pancreáticas/metabolismo , Melatonina/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Receptor MT1 de Melatonina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Duodeno/citologia , Células Enteroendócrinas/citologia , Ilhotas Pancreáticas/citologia , Melatonina/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Receptor MT1 de Melatonina/genética
20.
Cells ; 12(14)2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37508501

RESUMO

In mammals, the circadian system controls various physiological processes to maintain metabolism, behavior, and immune function during a daily 24 h cycle. Although driven by a cell-autonomous core clock in the hypothalamus, rhythmic activities are entrained to external cues, such as environmental lighting conditions. Exposure to artificial light at night (ALAN) can cause circadian disruption and thus is linked to an increased occurrence of civilization diseases in modern society. Moreover, alterations of circadian rhythms and dysregulation of immune responses, including inflammasome activation, are common attributes of neurodegenerative diseases, including Alzheimer', Parkinson's, and Huntington's disease. Although there is evidence that the inflammasome in the hippocampus is activated by stress, the direct effect of circadian disruption on inflammasome activation remains poorly understood. In the present study, we aimed to analyze whether exposure to constant light (LL) affects inflammasome activation in the mouse hippocampus. In addition to decreased circadian power and reduced locomotor activity, we found cleaved caspase 1 significantly elevated in the hippocampus of mice exposed to LL. However, we did not find hallmarks of inflammasome priming or cleavage of pro-interleukins. These findings suggest that acute circadian disruption leads to an assembled "ready to start" inflammasome, which may turn the brain more vulnerable to additional aversive stimuli.


Assuntos
Inflamassomos , Luz , Camundongos , Animais , Caspase 1 , Ritmo Circadiano/fisiologia , Hipocampo , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA