Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Glob Chang Biol ; 26(9): 4880-4893, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32663906

RESUMO

Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio-economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid-21st century. Based on responses from 36 experts in biological invasions, moderate (20%-30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions-transport, climate change and socio-economic change-were predicted to significantly affect future impacts of alien species on biodiversity even under a best-case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best-case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post-2020 Framework of the Convention on Biological Diversity.


Assuntos
Biodiversidade , Espécies Introduzidas , Mudança Climática , Ecossistema , Previsões , Humanos
2.
Ecol Appl ; 30(5): e02100, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32086969

RESUMO

Sandy beaches, a necessary habitat for nesting sea turtles, are increasingly under threat as they become squeezed between human infrastructure and shorelines that are changing as a result of rising sea levels. Forecasting where shifting sandy beaches will be obstructed and how that directly impacts coastal nesting species is necessary for successful conservation and management. Predicting changes to coastal nesting areas is difficult because of a lack of consensus on the physical attributes used by females in nesting site choice. In this study, we leveraged long-term data sets of nesting localities for two sea turtle species, loggerhead sea turtle, Caretta caretta, and green sea turtle, Chelonia mydas, within four barrier island National Seashores in the southeastern United States to predict future nesting beach area based on where these species currently nest in relation to mean high water. We predicted the future location of nesting areas based on a sea level rise scenario for 2100 and quantified how impervious surfaces will inhibit future beach movement, which will impact both the total available nesting area and the percentage of nesting area predicted to flood following a hurricane-related storm surge. Contrary to our expectations, those barrier islands with the greatest levels of human infrastructure were not projected to experience the greatest percentage of sea turtle nesting area loss due to sea level rise or storm surge events. Notably, loss of nesting beach areas will not have equal impacts across the four Seashores; the Seashore projected to have the least amount of total nesting area lost and percentage nesting area lost currently has the highest nesting densities of our two study species, suggesting that even low levels of beach loss could have substantial impacts on future nesting densities and disproportionate impacts on the population growth of these species. Our novel method of estimating current and future nesting beach area can be broadly applied to studies requiring a bounded area that encompasses the part of a beach used by nesting coastal species and will be useful in comparing future global nesting densities and population trajectories under projected future sea level rise and storm surge activity.


Assuntos
Tartarugas , Animais , Feminino , Ilhas , Comportamento de Nidação , Elevação do Nível do Mar , Sudeste dos Estados Unidos
3.
Environ Manage ; 57(1): 176-88, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26319030

RESUMO

Sea level rise (SLR) is posing a great inundation risk to coastal areas. Some coastal nesting species, including sea turtle species, have experienced diminished habitat from SLR. Contingent valuation method (CVM) was used in an effort to assess the economic loss impacts of SLR on sea turtle nesting habitats for Florida coasts; and to elicit values of willingness to pay (WTP) of Central Florida residents to implement certain mitigation strategies, which would protect Florida's east coast sea turtle nesting areas. Using the open-ended and dichotomous choice CVM, we sampled residents of two Florida communities: Cocoa Beach and Oviedo. We estimated the WTP of households from these two cities to protect sea turtle habitat to be between $42 and $57 per year for 5 years. Additionally, we attempted to assess the impact of the both the respondents' demographics and their perception toward various situations on their WTP value. Findings include a negative correlation between the age of a respondent and the probability of an individual willing to pay the hypothetical WTP amount. We found that WTP of an individual was not dependent on prior knowledge of the effects of SLR on sea turtle habitat. The greatest indicators of whether or not an individual was willing to pay to protect sea turtle habitat were the respondents' perception regarding the trustworthiness and efficiency of the party which will implement the conservation measures and their confidence in the conservation methods used. Respondents who perceive sea turtles having an effect on their life were also more likely to pay.


Assuntos
Conservação dos Recursos Naturais/economia , Tartarugas/crescimento & desenvolvimento , Adulto , Animais , Conservação dos Recursos Naturais/métodos , Ecossistema , Feminino , Florida , Humanos , Conhecimento , Masculino , Pessoa de Meia-Idade , Percepção , Características de Residência , Água do Mar/química , Inquéritos e Questionários/economia
4.
Oecologia ; 172(3): 915-24, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23242425

RESUMO

Habitat invasibility has been found to increase dramatically following the alteration of ecosystem properties by a nonnative species. Robinia pseudoacacia, black locust, is a nitrogen-fixing, clonal tree species that aggressively invades open habitats and expands outside of plantations worldwide. Robinia pseudoacacia stands in Cape Cod National Seashore were particularly susceptible to a hurricane in 1991 that caused widespread blowdown and a dramatic reduction in Robinia in some stands. We used this change to investigate the lasting ecological effects of this nonnative species on this upland coastal ecosystem. We established replicate clusters of 20 × 20 m field plots within 50 m of each other that contained native pitch pine (Pinus rigida) and oak (Quercus velutina, Q. alba) forest, living Robinia stands, and stands in which Robinia was eliminated or reduced to less than 5% cover by the hurricane. Net nitrification and extractable soil nitrate concentration differed significantly between stand types, in the order Robinia > former Robinia > pine-oak. Nonnative species cover differed significantly between each stand type, in the order Robinia > former Robinia > pine-oak. Invasion of Robinia pseudoacacia increased soil net nitrification and nitrogen availability and precipitated a change in forest species composition that favored nonnative species. The presence of elevated soil nitrogen and nonnative species persisted at least 14 years after the removal of the original invading tree species, suggesting that the invasion of a tree species left a legacy of altered soil biogeochemistry, a higher number of nonnative species, and greater nonnative species cover.


Assuntos
Ecossistema , Fixação de Nitrogênio , Robinia/fisiologia , Árvores , Solo
5.
AoB Plants ; 12(5): plaa040, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32968475

RESUMO

Plant species ranges are expected to shift in response to climate change, however, it is unclear how species interactions will affect range shifts. Because of the potential for enemy release of invasive nonnative plant species from species-specific soil pathogens, invasive plants may be able to shift ranges more readily than native plant species. Additionally, changing climatic conditions may alter soil microbial functioning, affecting plant-microbe interactions. We evaluated the effects of site, plant-soil microbe interactions, altered climate, and their interactions on the growth and germination of three congeneric shrub species, two native to southern and central Florida (Eugenia foetida and E. axillaris), and one nonnative invasive from south America (E. uniflora). We measured germination and biomass for these plant species in growth chambers grown under live and sterile soils from two sites within their current range, and one site in their expected range, simulating current (2010) and predicted future (2050) spring growing season temperatures in the new range. Soil microbes (microscopic bacteria, fungi, viruses and other organisms) had a net negative effect on the invasive plant, E. uniflora, across all sites and temperature treatments. This negative response to soil microbes suggests that E. uniflora's invasive success and potential for range expansion are due to other contributing factors, e.g. higher germination and growth relative to native Eugenia. The effect of soil microbes on the native species depended on the geographic provenance of the microbes, and this may influence range expansion of these native species.

6.
PLoS One ; 6(9): e24587, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21931766

RESUMO

Reliable estimates of the impacts and costs of biological invasions are critical to developing credible management, trade and regulatory policies. Worldwide, forests and urban trees provide important ecosystem services as well as economic and social benefits, but are threatened by non-native insects. More than 450 non-native forest insects are established in the United States but estimates of broad-scale economic impacts associated with these species are largely unavailable. We developed a novel modeling approach that maximizes the use of available data, accounts for multiple sources of uncertainty, and provides cost estimates for three major feeding guilds of non-native forest insects. For each guild, we calculated the economic damages for five cost categories and we estimated the probability of future introductions of damaging pests. We found that costs are largely borne by homeowners and municipal governments. Wood- and phloem-boring insects are anticipated to cause the largest economic impacts by annually inducing nearly $1.7 billion in local government expenditures and approximately $830 million in lost residential property values. Given observations of new species, there is a 32% chance that another highly destructive borer species will invade the U.S. in the next 10 years. Our damage estimates provide a crucial but previously missing component of cost-benefit analyses to evaluate policies and management options intended to reduce species introductions. The modeling approach we developed is highly flexible and could be similarly employed to estimate damages in other countries or natural resource sectors.


Assuntos
Conservação dos Recursos Naturais/economia , Ecossistema , Árvores , Animais , Teorema de Bayes , Meio Ambiente , Gastos em Saúde , Insetos , Modelos Econômicos , Política Pública , Estados Unidos
7.
PLoS One ; 5(7): e11500, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20657765

RESUMO

Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses.


Assuntos
Mudança Climática , Flores/fisiologia , Desenvolvimento Vegetal , Estações do Ano , Florida
8.
Ann N Y Acad Sci ; 1162: 18-38, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19432643

RESUMO

Biological invasions by nonnative species are a by-product of economic activities, with the vast majority of nonnative species introduced by trade and transport of products and people. Although most introduced species are relatively innocuous, a few species ultimately cause irreversible economic and ecological impacts, such as the chestnut blight that functionally eradicated the American chestnut across eastern North America. Assessments of the economic costs and losses induced by nonnative forest pests are required for policy development and need to adequately account for all of the economic impacts induced by rare, highly damaging pests. To date, countrywide economic evaluations of forest-invasive species have proceeded by multiplying a unit value (price) by a physical quantity (volume of forest products damaged) to arrive at aggregate estimates of economic impacts. This approach is inadequate for policy development because (1) it ignores the dynamic impacts of biological invasions on the evolution of prices, quantities, and market behavior, and (2) it fails to account for the loss in the economic value of nonmarket ecosystem services, such as landscape aesthetics, outdoor recreation, and the knowledge that healthy forest ecosystems exist. A review of the literature leads one to anticipate that the greatest economic impacts of invasive species in forests are due to the loss of nonmarket values. We proposed that new methods for evaluating aggregate economic damages from forest-invasive species need to be developed that quantify market and nonmarket impacts at microscales that are then extended using spatially explicit models to provide aggregate estimates of impacts. Finally, policies that shift the burden of economic impacts from taxpayers and forest landowners onto parties responsible for introducing or spreading invasives, whether through the imposition of tariffs on products suspected of imposing unacceptable risks on native forest ecosystems or by requiring standards on the processing of trade products before they cross international boundaries, may be most effective at reducing their impacts.


Assuntos
Conservação dos Recursos Naturais/economia , Ecossistema , Meio Ambiente , Monitoramento Ambiental/economia , Árvores/crescimento & desenvolvimento , Animais , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Efeito Estufa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA