Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(2): 409-416, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37942614

RESUMO

BACKGROUND: Evolving evidence suggests that besides signaling pathways, platelet activation involves a complex interplay between metabolic pathways to support thrombus growth. Selective targeting of metabolic checkpoints may inhibit platelet activation and provide a novel antiplatelet strategy. We, therefore, examined global metabolic changes that occur during the transition of human platelets from resting to an activated state to identify metabolites and associated pathways that contribute to platelet activation. METHODS: We performed metabolic profiling of resting and convulxin-stimulated human platelet samples. The differential levels, pathway analysis, and PCA (principal component analysis) were performed using Metaboanalyst. Metascape was used for metabolite network construction. RESULTS: Of the 401 metabolites identified, 202 metabolites were significantly upregulated, and 2 metabolites were downregulated in activated platelets. Of all the metabolites, lipids scored highly and constituted ≈50% of the identification. During activation, aerobic glycolysis supports energy demand and provides glycolytic intermediates required by metabolic pathways. Consistent with this, an important category of metabolites was carbohydrates, particularly the glycolysis intermediates that were significantly upregulated compared with resting platelets. We found that lysophospholipids such as 1-palmitoyl-GPA (glycero-3-phosphatidic acid), 1-stearoyl-GPS (glycero-3-phosphoserine), 1-palmitoyl-GPI (glycerophosphoinositol), 1-stearoyl-GPI, and 1-oleoyl-GPI were upregulated in activated platelets. We speculated that platelet activation could be linked to 1-carbon metabolism, a set of biochemical pathways that involve the transfer and use of 1-carbon units from amino acids, for cellular processes, including nucleotide and lysophospholipid synthesis. In alignment, based on pathway enrichment and network-based prioritization, the metabolites from amino acid metabolism, including serine, glutamate, and branched-chain amino acid pathway were upregulated in activated platelets, which might be supplemented by the high levels of glycolytic intermediates. CONCLUSIONS: Metabolic analysis of resting and activated platelets revealed that glycolysis and 1-carbon metabolism are necessary to support platelet activation.


Assuntos
Plaquetas , Ativação Plaquetária , Humanos , Plaquetas/metabolismo , Glicólise , Fosforilação , Transdução de Sinais
2.
Can J Physiol Pharmacol ; 102(2): 105-115, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979203

RESUMO

Previous studies from our laboratory revealed that the gaseous molecule hydrogen sulfide (H2S), a metabolic product of epigenetics, involves trans-sulfuration pathway for ensuring metabolism and clearance of homocysteine (Hcy) from body, thereby mitigating the skeletal muscle's pathological remodeling. Although the master circadian clock regulator that is known as brain and muscle aryl hydrocarbon receptor nuclear translocator like protein 1 (i.e., BMAL 1) is associated with S-adenosylhomocysteine hydrolase (SAHH) and Hcy metabolism but how trans-sulfuration pathway is influenced by the circadian clock remains unexplored. We hypothesize that alterations in the functioning of circadian clock during sleep and wake cycle affect skeletal muscle's biology. To test this hypothesis, we measured serum matrix metalloproteinase (MMP) activities using gelatin gels for analyzing the MMP-2 and MMP-9. Further, employing casein gels, we also studied MMP-13 that is known to be influenced by the growth arrest and DNA damage-45 (GADD45) protein during sleep and wake cycle. The wild type and cystathionine ß synthase-deficient (CBS-/+) mice strains were treated with H2S and subjected to measurement of trans-sulfuration factors from skeletal muscle tissues. The results suggested highly robust activation of MMPs in the wake mice versus sleep mice, which appears somewhat akin to the "1-carbon metabolic dysregulation", which takes place during remodeling of extracellular matrix during muscular dystrophy. Interestingly, the levels of trans-sulfuration factors such as CBS, cystathionine γ lyase (CSE), methyl tetrahydrofolate reductase (MTHFR), phosphatidylethanolamine N-methyltransferase (PEMT), and Hcy-protein bound paraoxonase 1 (PON1) were attenuated in CBS-/+ mice. However, treatment with H2S mitigated the attenuation of the trans-sulfuration pathway. In addition, levels of mitochondrial peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC 1-α) and mitofusin-2 (MFN-2) were significantly improved by H2S intervention. Our findings suggest participation of the circadian clock in trans-sulfuration pathway that affects skeletal muscle remodeling and mitochondrial regeneration.


Assuntos
Relógios Circadianos , Sulfeto de Hidrogênio , Animais , Camundongos , Sulfeto de Hidrogênio/metabolismo , Cistationina beta-Sintase , Músculo Esquelético/metabolismo , Géis , Cistationina gama-Liase/metabolismo , Fosfatidiletanolamina N-Metiltransferase
3.
Biochemistry (Mosc) ; 88(7): 1022-1033, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37751871

RESUMO

Pyridoxal-5'-phosphate (PLP), a phosphorylated form of vitamin B6, acts as a coenzyme for numerous reactions, including those changed in cancer and/or associated with the disease prognosis. Since highly reactive PLP can modify cellular proteins, it is hypothesized to be directly transferred from its donors to acceptors. Our goal is to validate the hypothesis by finding common motif(s) in the multitude of PLP-dependent enzymes for binding the limited number of PLP donors, namely pyridoxal kinase (PdxK), pyridox(am)in-5'-phosphate oxidase (PNPO), and PLP-binding protein (PLPBP). Experimentally confirmed interactions between the PLP donors and acceptors reveal that PdxK and PNPO interact with the most abundant PLP acceptors belonging to structural folds I and II, while PLPBP - with those belonging to folds III and V. Aligning sequences and 3D structures of the identified interactors of PdxK and PNPO, we have identified a common motif in the PLP-dependent enzymes of folds I and II. The motif extends from the enzyme surface to the neighborhood of the PLP binding site, represented by an exposed alfa-helix, a partially buried beta-strand, and residual loops. Pathogenicity of mutations in the human PLP-dependent enzymes within or in the vicinity of the motif, but outside of the active sites, supports functional significance of the motif that may provide an interface for the direct transfer of PLP from the sites of its synthesis to those of coenzyme binding. The enzyme-specific amino acid residues of the common motif may be useful to develop selective inhibitors blocking PLP delivery to the PLP-dependent enzymes critical for proliferation of malignant cells.


Assuntos
Aminoácidos , Coenzimas , Humanos , Sítios de Ligação , Fosfatos , Piridoxal
4.
Can J Physiol Pharmacol ; 99(1): 115-123, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32721223

RESUMO

Hyperhomocysteinemia (HHcy) affects bone remodeling, since a destructive process in cortical alveolar bone has been linked to it; however, the mechanism remains at large. HHcy increases proinflammatory cytokines viz. TNF-α, IL-1b, IL-6, and IL-8 that leads to a cascade that negatively impacts methionine metabolism and homocysteine cycling. Further, chronic inflammation decreases vitamins B12, B6, and folic acid that are required for methionine homocysteine homeostasis. This study aims to investigate a HHcy mouse model (cystathionine ß-synthase deficient, CBS+/-) for studying the potential pathophysiological changes, if any, in the periodontium (gingiva, periodontal ligament, cement, and alveolar bone). We compared the periodontium side-by-side in the CBS+/- model with that of the wild-type (C57BL/6J) mice. Histology and histomorphometry of the mandibular bone along with gene expression analyses were carried out. Also, proangiogenic proteins and metalloproteinases were studied. To our knowledge, this research shows, for the first time, a direct connection between periodontal disease during CBS deficiency, thereby suggesting the existence of disease drivers during the hyperhomocysteinemic condition. Our findings offer opportunities to develop diagnostics/therapeutics for people who suffer from chronic metabolic disorders like HHcy.


Assuntos
Cistationina beta-Sintase/deficiência , Hiper-Homocisteinemia/complicações , Periodontite/imunologia , Periodonto/patologia , Animais , Cistationina beta-Sintase/genética , Modelos Animais de Doenças , Ácido Fólico , Homocisteína/sangue , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/imunologia , Hiper-Homocisteinemia/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/imunologia , Periodontite/patologia , Periodonto/imunologia
5.
Can J Physiol Pharmacol ; 99(1): 9-17, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32706987

RESUMO

Periodontal disease is one of the most common conditions resulting from poor oral hygiene and is characterized by a destructive process in the periodontium that essentially includes gingiva, alveolar mucosa, cementum, periodontal ligament, and alveolar bone. Notably, the destructive event in the alveolar bone has been linked to homocysteine (Hcy) metabolism; however, it has not been fully investigated. Therefore; the implication of Hcy towards initiation, progression, and maintenance of the periodontal disease remains incompletely understood. Higher levels of Hcy (also known as hyperhomocysteinemia (HHcy)) exerts deleterious effects on gum health and teeth in distinct ways. Firstly, increased production of proinflammatory cytokines such as TNF-α, IL-1ß, IL-6, and IL-8 leads to an inflammatory cascade of events that affect methionine (Met) and Hcy metabolism (i.e., 1-carbon metabolism) leading to HHcy. Secondly, metabolic dysregulation during chronic medical conditions increases systemic inflammation leading to a decrease in vitamins, more specifically B6, B12, and folic acid, that play important roles as cofactors in Hcy metabolism. Also, given the folate level in the HHcy state that is important during dysbiosis, these two conditions appear to be intimately related, and in this context, HHcy-induced dysbiosis may be one of the potential causes of periodontal disease. This paper sums up the link between periodontitis and HHcy, with a special emphasis on the "oral-gut microbiome axis" and the potential probiotic intervention towards warding off some of the serious periodontal disease conditions.


Assuntos
Disbiose/complicações , Microbioma Gastrointestinal/fisiologia , Homocisteína/metabolismo , Hiper-Homocisteinemia/imunologia , Periodontite/imunologia , Disbiose/sangue , Disbiose/imunologia , Disbiose/microbiologia , Ácido Fólico/sangue , Ácido Fólico/metabolismo , Homocisteína/sangue , Homocisteína/imunologia , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/metabolismo , Metionina/metabolismo , Periodontite/sangue , Periodontite/metabolismo , Probióticos
6.
Can J Physiol Pharmacol ; 99(1): 56-63, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32799662

RESUMO

Epigenetic DNA methylation (1-carbon metabolism) is crucial for gene imprinting/off-printing that ensures epigenetic memory but also generates a copious amount of homocysteine (Hcy), unequivocally. That is why during pregnancy, expectant mothers are recommended "folic acid" preemptively to avoid birth defects in the young ones because of elevated Hcy levels (i.e., hyperhomocysteinemia (HHcy)). As we know, children born with HHcy have several musculoskeletal abnormalities, including growth retardation. Here, we focus on the gut-dysbiotic microbiome implication(s) that we believe instigates the "1-carbon metabolism" and HHcy causing growth retardation along with skeletal muscle abnormalities. We test our hypothesis whether high-methionine diet (HMD) (an amino acid that is high in red meat), a substrate for Hcy, can cause skeletal muscle and growth retardation, and treatment with probiotics (PB) to mitigate skeletal muscle dysfunction. To test this, we employed cystathionine ß-synthase, CBS deficient mouse (CBS+/-) fed with/without HMD and with/without a probiotic (Lactobacillus rhamnosus) in drinking water for 16 weeks. Matrix metalloproteinase (MMP) activity, a hallmark of remodeling, was measured by zymography. Muscle functions were scored via electric stimulation. Our results suggest that compared to the wild-type, CBS+/- mice exhibited reduced growth phenotype. MMP-2 activity was robust in CBS+/- and HMD effects were successfully attenuated by PB intervention. Electrical stimulation magnitude was decreased in CBS+/- and CBS+/- treated with HMD. Interestingly; PB mitigated skeletal muscle growth retardation and atrophy. Collectively, results imply that individuals with mild/moderate HHcy seem more prone to skeletal muscle injury and its dysfunction.


Assuntos
Disbiose/complicações , Transtornos do Crescimento/prevenção & controle , Hiper-Homocisteinemia/complicações , Músculo Esquelético/patologia , Probióticos/administração & dosagem , Animais , Cistationina beta-Sintase/deficiência , Cistationina beta-Sintase/genética , Metilação de DNA , Modelos Animais de Doenças , Disbiose/metabolismo , Disbiose/microbiologia , Disbiose/terapia , Epigênese Genética , Feminino , Microbioma Gastrointestinal/fisiologia , Transtornos do Crescimento/sangue , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/patologia , Homocisteína/sangue , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Lacticaseibacillus rhamnosus , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metionina/administração & dosagem , Metionina/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo
7.
FASEB J ; 33(1): 833-843, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30080444

RESUMO

One-carbon metabolism provides a direct link among dietary folate/vitamin B12 exposure, the activity of the enzyme methylenetetrahydrofolate reductase (MTHFR), and epigenetic regulation of the genome via DNA methylation. Previously, it has been shown that the common c.677C > T polymorphism in MTHFR influences global DNA methylation status through a direct interaction with folate status and (indirectly) with total homocysteine (tHcy) levels. To build on that and other more recent observations that have further highlighted associations among MTHFR c.677C > T, tHcy, and aberrations in DNA methylation, we investigated whether the interaction between mildly elevated plasma tHcy and the c.677C > T polymorphism is associated with site-specific changes in DNA methylation in humans. We used data on plasma tHcy levels, c.677C > T polymorphism, and site-specific DNA methylation levels for a total of 915 white women and 335 men from the TwinsUK registry ( n = 610) and the Rotterdam study ( n = 670). We performed methylome-wide association analyses in each cohort to model the interaction between levels of tHcy and c.677C > T genotypes on DNA methylation ß values. Our meta-analysis identified 13 probes significantly associated with rs1801133 × tHcy levels [false-discovery rate (FDR) < 0.05]. The most significant associations were with a cluster of probes at the AGTRAP-MTHFR-NPPA/B gene locus on chromosome 1 (FDR = 1.3E-04), with additional probes on chromosomes 2, 3, 4, 7, 12, 16, and 19. Our top 2 hits on chromosome 1 were functionally associated with variability in expression of the TNF receptor superfamily member 8 ( TNFRSF8) gene/locus on that chromosome. This is the first study, to our knowledge, to provide a direct link between perturbations in 1-carbon metabolism, through an interaction of tHcy and the activity of MTHFR enzyme on epigenetic regulation of the genome via DNA methylation.-Nash, A. J., Mandaviya, P. R., Dib, M.-J., Uitterlinden, A. G., van Meurs, J., Heil, S. G., Andrew, T., Ahmadi, K. R. Interaction between plasma homocysteine and the MTHFR c.677C>T polymorphism is associated with site-specific changes in DNA methylation in humans.


Assuntos
Metilação de DNA , Homocisteína/sangue , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo Genético , Idoso , Mapeamento Cromossômico , Estudos de Coortes , Suplementos Nutricionais , Epigênese Genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Estudos em Gêmeos como Assunto , Vitaminas/administração & dosagem
9.
J Dairy Sci ; 102(9): 8319-8331, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31056334

RESUMO

Although choline requirements for cows are unknown, enhanced postruminal supply may decrease liver triacylglycerol and increase flux through the Met cycle to improve immunometabolic status during a negative nutrient balance (NNB). Our objectives were to investigate the effects of postruminal choline supply during a feed restriction-induced NNB on (1) hepatic activity cystathionine ß-synthase and transcription of enzymes in the transsulfuration pathway and Met cycle; (2) hepatic metabolites in the Met cycle and the transsulfuration pathway, bile acids, and energy metabolism; and 3) plasma biomarkers of liver function, inflammation, and oxidative stress. Ten primiparous rumen-cannulated Holstein cows (158 ± 24 d postpartum) were used in a replicated 5 × 5 Latin square design with 4-d treatment periods and 10 d of recovery (14 d/period). Treatments were unrestricted intake with abomasal infusion of water, restricted intake (R; 60% of net energy for lactation requirements) with abomasal infusion of water, or R plus abomasal infusion of 6.25, 12.5, or 25 g/d choline ion. Liver tissue was collected on d 5 after infusions ended, and blood was collected on d 1, 3, and 5. Statistical contrasts were A0 versus R0 (CONT1), R versus the average of choline doses (CONT2), and tests of linear and quadratic effects of choline dose. Activity of cystathionine ß-synthase was lower with R (CONT1) and decreased linearly with choline. Hepatic glutathione was not different with R or choline, but taurine tended to be greater with choline (CONT2). Betaine and carnitine were greater with R (CONT1) and further increased with choline (CONT2). Concentrations of NAD+ were greater with choline (CONT2). Cholic and glycol-chenodeoxycholic acids were decreased by R and choline, while taurocholic and tauro-chenodeoxycholic acids were not altered. Plasma aspartate aminotransferase and bilirubin were greater with R (CONT1) but decreased with choline (CONT2). Paraoxonase was lower with R and increased with choline (CONT2). Data suggest that enhanced supply of choline during NNB decreases entry of homocysteine to the transsulfuration pathway, potentially favoring remethylation to Met by acquiring a methyl group from betaine. As such, Met may provide methyl groups for synthesis of carnitine. Along with production data indicating that 12.5 g/d choline ion improved milk yield and liver fatty acid metabolism during NNB, the changes in blood biomarkers also suggest a beneficial effect of choline supply on liver function and oxidative stress.


Assuntos
Bovinos/fisiologia , Colina/administração & dosagem , Cistationina beta-Sintase/metabolismo , Fígado/fisiologia , Metionina/metabolismo , Compostos de Enxofre/metabolismo , Abomaso/metabolismo , Animais , Betaína/metabolismo , Dieta/veterinária , Metabolismo Energético , Feminino , Humanos , Lactação/efeitos dos fármacos , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Leite/metabolismo , Necessidades Nutricionais , Estado Nutricional/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Período Periparto , Período Pós-Parto , Gravidez , Triglicerídeos/metabolismo
10.
Gastroenterology ; 152(6): 1449-1461.e7, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28132890

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is a consequence of defects in diverse metabolic pathways that involve hepatic accumulation of triglycerides. Features of these aberrations might determine whether NAFLD progresses to nonalcoholic steatohepatitis (NASH). We investigated whether the diverse defects observed in patients with NAFLD are caused by different NAFLD subtypes with specific serum metabolomic profiles, and whether these can distinguish patients with NASH from patients with simple steatosis. METHODS: We collected liver and serum from methionine adenosyltransferase 1a knockout (MAT1A-KO) mice, which have chronically low levels of hepatic S-adenosylmethionine (SAMe) and spontaneously develop steatohepatitis, as well as C57Bl/6 mice (controls); the metabolomes of all samples were determined. We also analyzed serum metabolomes of 535 patients with biopsy-proven NAFLD (353 with simple steatosis and 182 with NASH) and compared them with serum metabolomes of mice. MAT1A-KO mice were also given SAMe (30 mg/kg/day for 8 weeks); liver samples were collected and analyzed histologically for steatohepatitis. RESULTS: Livers of MAT1A-KO mice were characterized by high levels of triglycerides, diglycerides, fatty acids, ceramides, and oxidized fatty acids, as well as low levels of SAMe and downstream metabolites. There was a correlation between liver and serum metabolomes. We identified a serum metabolomic signature associated with MAT1A-KO mice that also was present in 49% of the patients; based on this signature, we identified 2 NAFLD subtypes. We identified specific panels of markers that could distinguish patients with NASH from patients with simple steatosis for each subtype of NAFLD. Administration of SAMe reduced features of steatohepatitis in MAT1A-KO mice. CONCLUSIONS: In an analysis of serum metabolomes of patients with NAFLD and MAT1A-KO mice with steatohepatitis, we identified 2 major subtypes of NAFLD and markers that differentiate steatosis from NASH in each subtype. These might be used to monitor disease progression and identify therapeutic targets for patients.


Assuntos
Metabolismo dos Lipídeos , Metaboloma , Metionina Adenosiltransferase/genética , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/classificação , Adulto , Animais , Biomarcadores/sangue , Ceramidas/metabolismo , Diglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , S-Adenosilmetionina/metabolismo , Triglicerídeos/metabolismo
11.
Clin Genet ; 93(1): 191-193, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28742214

RESUMO

Folate and vitamin B12 are needed for the proper embryo-fetal development possibly through their interacting role in the 1-carbon metabolism. Folate fortification reduces the prevalence of complex birth defects, and more specifically neural tube defects (NTDs). GIF and FUT2 are 2 genes associated with the uptake and blood level of vitamin B12. We evaluated GIF and FUT2 as predictors of severe birth defects, in 183 aborted fetuses compared with 375 healthy newborns. The GIF290C allele frequency was estimated to 0.4% in healthy newborns and to 8.1% in NTD fetuses (odds ratio 17.8 [95% confidence interval CI: 4.0-77.6]). The frequency of FUT2 rs601338 secretor variant was not different among groups. The GIF 290C heterozygous/FUT2 rs601338 secretor variant combined genotype was reported in 6 of the 37 NTD fetuses, but not in other fetuses and healthy newborns (P < .0001). This GIF/FUT2 combined genotype has been previously reported in children with congenital gastric intrinsic factor (GIF) deficiency, with respective consequences on B12 binding activity and GIF secretion. In conclusion, a genotype reported in congenital GIF deficiency produces also severe forms of NTD. This suggests that vitamin B12 delivery to neural tissue by the CUBN/GIF pathway could play a role in the neural tube closure mechanisms.


Assuntos
Fucosiltransferases/genética , Predisposição Genética para Doença/genética , Fator Intrínseco/genética , Mutação , Defeitos do Tubo Neural/genética , Polimorfismo de Nucleotídeo Único , Estudos de Coortes , Feto/metabolismo , Frequência do Gene , Genótipo , Heterozigoto , Humanos , Recém-Nascido , Análise de Sequência de DNA/métodos , Galactosídeo 2-alfa-L-Fucosiltransferase
12.
FASEB J ; 31(2): 505-518, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27770020

RESUMO

Early-life stress (ES) impairs cognition later in life. Because ES prevention is problematic, intervention is needed, yet the mechanisms that underlie ES remain largely unknown. So far, the role of early nutrition in brain programming has been largely ignored. Here, we demonstrate that essential 1-carbon metabolism-associated micronutrients (1-CMAMs; i.e., methionine and B vitamins) early in life are crucial in programming later cognition by ES. ES was induced in male C57Bl/6 mice from postnatal d (P)2-9. 1-CMAM levels were measured centrally and peripherally by using liquid chromatography-mass spectroscopy. Next, we supplemented the maternal diet with 1-CMAM only during the ES period and studied cognitive, neuroendocrine, neurogenic, transcriptional, and epigenetic changes in adult offspring. We demonstrate that ES specifically reduces methionine in offspring plasma and brain. Of note, dietary 1-CMAM enrichment during P2-9 restored methionine levels and rescued ES-induced adult cognitive impairments. Beneficial effects of this early dietary enrichment were associated with prevention of the ES-induced rise in corticosterone and adrenal gland hypertrophy did not involve changes in maternal care, hippocampal volume, neurogenesis, or global/Nr3c1-specific DNA methylation. In summary, nutrition is important in brain programming by ES. A short, early supplementation with essential micronutrients can already prevent lasting effects of ES. This concept opens new avenues for nutritional intervention.-Naninck, E. F. G., Oosterink, J. E., Yam, K.-Y., de Vries, L. P., Schierbeek, H., van Goudoever, J. B., Verkaik-Schakel, R.-N., Plantinga, J. A., Plosch, T., Lucassen, P. J., Korosi, A. Early micronutrient supplementation protects against early stress-induced cognitive impairments.


Assuntos
Disfunção Cognitiva/prevenção & controle , Dieta/veterinária , Suplementos Nutricionais , Metionina/farmacologia , Micronutrientes/administração & dosagem , Complexo Vitamínico B/farmacologia , Envelhecimento , Animais , Disfunção Cognitiva/etiologia , Corticosterona/metabolismo , Feminino , Abrigo para Animais , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Metionina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Estresse Fisiológico , Complexo Vitamínico B/administração & dosagem
13.
J Dairy Sci ; 101(12): 11384-11395, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30316602

RESUMO

Insufficient supply of Met and choline (Chol) around parturition could compromise hepatic metabolism and milk protein synthesis in dairy cows. Mechanistic responses associated with supply of Met or Chol in primary liver cells enriched with hepatocytes (PHEP) from cows have not been thoroughly ascertained. Objectives were to isolate and culture PHEP to examine abundance of genes and proteins related to transmethylation, transsulfuration, and cytidine 5'-diphosphocholine (CDP-choline) pathways in response to Met or Chol. The PHEP were isolated from liver biopsies of Holstein cows (160 d in lactation). More than 90% of isolated cells stained positively for the hepatocyte marker cytokeratin 18. Cytochrome P450 (CYP1A1) mRNA abundance was only detectable in the PHEP and liver tissue compared with mammary tissue. Furthermore, in response to exogenous Met (80 µM vs. control) PHEP secreted greater amounts of albumin and urea. Subsequently, PHEP were cultured with Met (40 µM) or Chol (80 mg/dL) for 24 h. Compared with control or Chol, mRNA and protein abundance of methionine adenosyltransferase 1A (MAT1A) and phosphatidylethanolamine methyltransferase (PEMT) were greater in PHEP treated with Met. The mRNA abundance of S-adenosylhomocysteine hydrolase (SAHH), betaine-homocysteine methyltransferase (BHMT), and sarcosine dehydrogenase (SARDH) was greater in Met-treated PHEP compared with control or Chol. Compared with control, greater expression of 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), betaine aldehyde dehydrogenase (BADH), and choline dehydrogenase (CHDH) was observed in cells supplemented with Met and Chol. However, Chol led to the greatest mRNA abundance of CHDH. Abundance of choline kinase α (CHKA), choline kinase ß (CHKB), phosphate cytidylyltransferase 1 α (PCYT1A), and choline/ethanolamine phosphotransferase 1 (CEPT1) in the CDP-choline pathway was greater in PHEP treated with Chol compared with control or Met. In the transsulfuration pathway, mRNA and protein abundance of cystathionine ß-synthase (CBS) was greater in PHEP treated with Met compared with control or Chol. Similarly, abundance of cysteine sulfinic acid decarboxylase (CSAD), glutamate-cysteine ligase, catalytic subunit (GCLC), and glutathione reductase (GSR) was greater in response to Met compared with control or Chol. Overall, these findings suggest that transmethylation and transsulfuration in dairy cow primary liver cells are more responsive to Met supply, whereas the CDP-choline pathway is more responsive to Chol supply. The relevance of these data in vivo merit further study.


Assuntos
Colina/metabolismo , Citidina Difosfato Colina/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Metionina/metabolismo , Animais , Betaína-Homocisteína S-Metiltransferase/metabolismo , Bovinos , Células Cultivadas , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Lactação , Proteínas do Leite/metabolismo , Parto , Gravidez
14.
FASEB J ; 30(10): 3321-3333, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27342765

RESUMO

Although single nucleotide polymorphisms (SNPs) in folate-mediated pathways predict susceptibility to choline deficiency during severe choline deprivation, it is unknown if effects persist at recommended intakes. Thus, we used stable isotope liquid chromatography-mass spectrometry (LC-MS) methodology to examine the impact of candidate SNPs on choline metabolism in a long-term, randomized, controlled feeding trial among pregnant, lactating, and nonpregnant (NP) women consuming 480 or 930 mg/d choline (22% as choline-d9, with d9 indicating a deuterated trimethyl amine group) and meeting folate-intake recommendations. Variants impairing folate metabolism, methylenetetrahydrofolate reductase (MTHFR) rs1801133, methionine synthase (MTR) rs1805087 [wild-type (WT)], MTR reductase (MTRR) rs1801394, and methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) rs2236225, influenced choline dynamics, frequently through interactions with reproductive state and choline intake, with fewer genotypic alterations observed among pregnant women. Women with these variants partitioned more dietary choline toward phosphatidylcholine (PC) biosynthesis via the cytidine diphosphate (CDP)-choline pathway at the expense of betaine synthesis even when use of betaine as a methyl donor was increased. Choline intakes of 930 mg/d restored partitioning of dietary choline between betaine and CDP-PC among NP (MTHFR rs1801133 and MTR rs1805087 WT) and lactating (MTHFD1 rs2236225) women with risk genotypes. Overall, our findings indicate that loss-of-function variants in folate-metabolizing enzymes strain cellular PC production, possibly via impaired folate-dependent phosphatidylethanolamine-N-methyltransferase (PEMT)-PC synthesis, and suggest that women with these risk genotypes may benefit from choline intakes exceeding current recommendations.-Ganz, A. B., Shields, K., Fomin, V. G., Lopez, Y. S., Mohan, S., Lovesky, J., Chuang, J. C., Ganti, A., Carrier, B., Yan, J., Taeswuan, S., Cohen, V. V., Swersky, C. C., Stover, J. A., Vitiello, G. A., Malysheva, O. V., Mudrak, E., Caudill, M. A. Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis.


Assuntos
Betaína/metabolismo , Colina/genética , Dieta , Ácido Fólico/genética , Fosfatidilcolinas/genética , Polimorfismo de Nucleotídeo Único/genética , Betaína/farmacologia , Colina/metabolismo , Feminino , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/metabolismo , Genótipo , Humanos , Lactação/fisiologia , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Fosfatidilcolinas/biossíntese
15.
J Dairy Sci ; 100(4): 3209-3219, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28161170

RESUMO

An important mechanism of nutritional "programming" induced by supplementation with methyl donors during pregnancy is the alteration of mRNA abundance in the offspring. We investigated the effects of rumen-protected Met (RPM) on abundance of 17 genes in the 1-carbon, Met, and transsulfuration pathways in calf liver from cows fed the same basal diet without (control, CON) or with RPM at 0.08% of diet dry matter/d (MET) from -21 through +30 d around calving. Biopsies (n = 8 calves per diet) were harvested on d 4, 14, 28, and 50 of age. Cows fed RPM had greater plasma concentration of Met (17.8 vs. 28.2 µM) at -10 d from calving. However, no difference was present in colostrum yield and free AA concentrations. Greater abundance on d 4 and 14 of betaine-homocysteine S-methyltransferase 2 (BHMT2), adenosylhomocysteinase (AHCY; also known as SAHH), and cystathionine-ß-synthase (CBS) in MET calves indicated alterations in Met, choline, and homocysteine metabolism. Those data agree with the greater abundance of methionine adenosyltransferase 1A (MAT1A) in MET calves. Along with CBS, the greater abundance of glutamate-cysteine ligase (GCLC) and glutathione reductase (GSR) on d 4 in MET calves indicated a short-term postnatal alteration in the use of homocysteine for taurine and glutathione synthesis (both are potent intracellular antioxidants). The striking 7-fold upregulation at d 50 versus 4 of cysteine sulfinic acid decarboxylase (CSAD), catalyzing the last step of taurine synthesis, in MET and CON calves underscores an important role of taurine during postnatal calf growth. The unique role of taurine in the young calf is further supported by the upregulation of CBS, GCLC, and GSR at d 50 versus 14 and 28 in MET and CON. Although betaine-homocysteine S-methyltransferase (BHMT) activity did not differ in MET and CON, it increased ∼50% at d 14 and 28 versus 4. A significant positive correlation (r = 0.79) was present between BHMT abundance and BHMT activity regardless of treatment. The gradual upregulation over time of BHMT2 and SAHH coupled with the gradual upregulation of MAT1A and the DNA (cytosine-5-)-methyltransferases (DNMT1, DNMT3A, DNMT3B) in MET and CON calves was indicative of adaptations potentially driven by differences in intake of milk replacer and starter feed as calves grew. In that context, the ∼2.5-fold increase in abundance of DNMT3B at d 50 versus 4 in MET and CON indicate that DNA methylation might be an important component of the physiologic adaptations of calf liver. The data indicate that calves from MET-supplemented cows underwent alterations in Met, choline, and homocysteine metabolism partly to synthesize taurine and glutathione, which would be advantageous for controlling metabolic-related stress. Whether the effects in MET calves were directly related to increased Met supply in utero remains to be determined.


Assuntos
Metionina/administração & dosagem , Rúmen/metabolismo , Animais , Carbono/metabolismo , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Feminino , RNA Mensageiro/metabolismo
16.
J Nutr ; 146(10): 2007-2012, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27581577

RESUMO

BACKGROUND: The neonatal methionine requirement must consider not only the high demand for rapid tissue protein expansion but also the demands as the precursor for a suite of critical transmethylation reactions. However, methionine metabolism is inherently complex because upon transferring its methyl group during transmethylation, methionine can be reformed by the dietary methyl donors choline (via betaine) and folate. OBJECTIVE: We sought to determine whether dietary methyl donors contribute to methionine availability for protein synthesis in neonatal piglets. METHODS: Yucatan miniature piglets aged 4-8 d were fed a diet that provided 38 µg folate/(kg·d), 60 mg choline/(kg·d), and 238 mg betaine/(kg·d) [methyl-sufficient (MS); n = 8] or a diet devoid of these methyl precursors [methyl-deficient (MD); n = 8]. After 5 d, dietary methionine was reduced from 0.30 to 0.20 g/(kg·d) in both groups. On day 6, piglets received a constant [1-13C]phenylalanine infusion to measure whole-body protein kinetics, and on day 8 they received a constant [3H-methyl]methionine infusion to measure tissue-specific protein synthesis in skeletal muscle, the liver, and the jejunum. RESULTS: Whole-body phenylalanine flux, protein synthesis, and protein breakdown were 13%, 12%, and 22% lower, respectively, in the MD group than in the MS group (P < 0.05). Reduced whole-body protein synthesis in the MD piglets was attributed to 50% lower protein synthesis in skeletal muscle and the jejunum than in the MS piglets (P < 0.05). Furthermore, methionine availability in skeletal muscle was halved in piglets fed the MD diet (P < 0.05), and the specific radioactivity of methionine was doubled in the jejunum of MD piglets (P < 0.05), suggesting lower intestinal remethylation. Liver protein synthesis did not significantly differ between the groups, but secreted proteins were not measured. CONCLUSIONS: Dietary methyl donors can affect whole-body and tissue-specific protein synthesis in neonatal piglets and should be considered when determining the methionine requirement.


Assuntos
Dieta , Jejuno/metabolismo , Metionina/análogos & derivados , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Animais , Animais Recém-Nascidos , Betaína/administração & dosagem , Colina/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Ácido Fólico/administração & dosagem , Masculino , Metionina/administração & dosagem , Fenilalanina/administração & dosagem , Suínos
17.
Amino Acids ; 48(12): 2821-2830, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27562792

RESUMO

Methionine metabolism is critical during development with significant requirements for protein synthesis and transmethylation reactions. However, separate requirements of methionine for protein synthesis and transmethylation are difficult to define because after transmethylation, demethylated methionine is either irreversibly oxidized to cysteine during transsulfuration, or methionine is regenerated by the dietary methyl donors, choline (via betaine) or folate during remethylation. We hypothesized that remethylation contributes significantly to methionine availability and affects partitioning between protein and transmethylation. 4-8-day-old neonatal piglets were fed a diet devoid (MD-) (n = 8) or replete (MS+) (n = 8) of folate, choline and betaine to limit remethylation. After 5 days, dietary methionine was reduced to 80 % of requirement in both groups of piglets to ensure methionine availability was limited. On day 7, an intragastric infusion of [13C1]methionine and [2H3-methyl]methionine was administered to measure methionine cycle flux. In MD- piglets, in vivo remethylation was 60 % lower despite 23-fold greater conversion of choline to betaine (P < 0.05) and transmethylation was 56 % lower (P < 0.05), suggesting dietary methyl donors spared 425 µmol methyl/day for transmethylation. The priority of protein synthesis versus transmethylation was clear during MD- feeding (P < 0.05), as an additional 6 % of methionine flux was for protein synthesis in those piglets (P < 0.05). However, whole body transsulfuration was unaffected in vivo despite reduced in vitro cystathionine-ß-synthase capacity in MD- piglets (P < 0.05). Our data show that remethylation contributes significantly to methionine availability and that transmethylation is sacrificed to maintain protein synthesis when methionine is limiting in neonates, which should be considered when determining the methionine requirement.


Assuntos
Cisteína/metabolismo , Dieta , Metionina/metabolismo , Biossíntese de Proteínas , Animais , Betaína/metabolismo , Colina/metabolismo , Cisteína/química , Comportamento Alimentar , Ácido Fólico/metabolismo , Metionina/administração & dosagem , Metionina/análogos & derivados , Metionina/química , Metilação , Suínos
18.
Eur J Nutr ; 55(8): 2423-2430, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26419586

RESUMO

PURPOSE: Both folate and betaine (synthesized from choline) are nutrients used to methylate homocysteine to reform the amino acid methionine following donation of its methyl group; however, it is unclear whether both remethylation pathways are of equal importance during the neonatal period when remethylation rates are high. Methionine is an indispensable amino acid that is in high demand in neonates not only for protein synthesis, but is also particularly important for transmethylation reactions, such as creatine and phosphatidylcholine synthesis. The objective of this study was to determine whether supplementation with folate, betaine, or a combination of both can equally re-synthesize methionine for protein synthesis when dietary methionine is limiting. METHODS: Piglets were fed a low methionine diet devoid of folate, choline, and betaine, and on day 6, piglets were supplemented with either folate, betaine, or folate + betaine (n = 6 per treatment) until day 10. [1-13C]-phenylalanine oxidation was measured as an indicator of methionine availability for protein synthesis both before and after 2 days of supplementation. RESULTS: Prior to supplementation, piglets had lower concentrations of plasma folate, betaine, and choline compared to baseline with no change in homocysteine. Post-supplementation, phenylalanine oxidation levels were 20-46 % lower with any methyl donor supplementation (P = 0.006) with no difference among different supplementation groups. Furthermore, both methyl donors led to similarly lower concentrations of homocysteine following supplementation (P < 0.05). CONCLUSIONS: These data demonstrate an equal capacity for betaine and folate to remethylate methionine for protein synthesis, as indicated by lower phenylalanine oxidation.


Assuntos
Betaína/sangue , Ácido Fólico/sangue , Metionina/biossíntese , Metionina/deficiência , Biossíntese de Proteínas , Animais , Betaína/administração & dosagem , Isótopos de Carbono/sangue , Colina/administração & dosagem , Colina/sangue , Cisteína/sangue , Dieta , Suplementos Nutricionais , Ácido Fólico/administração & dosagem , Homocisteína/sangue , Metionina/sangue , Modelos Biológicos , Oxirredução , Fenilalanina/sangue , Suínos
19.
Curr Dev Nutr ; 8(2): 102075, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351975

RESUMO

Background: The enzyme phosphatidylethanolamine N-methyltransferase (PEMT) is responsible for synthesizing phosphatidylcholine by methylating phosphatidylethanolamine. We hypothesized that a polymorphism of the PEMT gene, rs7946, is involved in carcinogenesis. Objectives: We aimed to investigate the relationship between PEMT rs7946 and digestive system cancer and examine possible effect modifiers and mediators. Methods: We conducted a nested, case-control study within the China H-type Hypertension Registry Study, including 751 cases and 1:1 matched controls. To assess the association of PEMT rs7946 and digestive system cancer, we estimated odds ratios with 95% confidence intervals (CIs) using conditional logistic regression. We used the bootstrap test to examine the potential mediating effects of related metabolites. Results: Our results revealed that wild-type homozygous CC genotype carriers of PEMT rs7946 had a significantly increased risk [odds ratio (OR): 1.31; 95% CI: 1.04, 1.66; P = 0.023] compared with the TT/CT combined genotypes. The effect was found to be more pronounced in individuals with a lower choline-to-betaine ratio (<0.412, P-interaction = 0.021). Furthermore, the mediation analysis indicated that the choline-to-betaine ratio played a significant role in mediating 13.55% of the association between PEMT rs7946 and digestive system cancer (P = 0.018). Conclusions: Our study suggested that PEMT rs7946 may affect risk of digestive system cancer through direct and indirect pathways, and the choline-to-betaine ratio may partially mediate the indirect effect.This trial was registered at Chinese Clinical Trial Registry as ChiCTR1800017274.

20.
Aging Cell ; 22(2): e13772, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36691110

RESUMO

Chronic binge-like drinking is a risk factor for age-related dementia, however, the lasting and irreversible effect of alcohol on the brain remains elusive. Transcriptomic changes in brain cortices revealed pro-ageing hallmarks upon chronic ethanol exposure and these changes predominantly occur in neurons. The changes are attributed to a prioritized ethyl alcohol oxidation in these cells via the NADPH-dependent cytochrome pathway. This hijacks the folate metabolism of the 1-carbon network which supports the pathway choice of DNA repair via the non-cell cycle-dependent mismatch repair networks. The lost-in-function of such results in the de-inactivation of the less preferred cell cycle-dependent homologous recombination (HR) repair, forcing these post-mitotic cells to re-engage in a cell cycle-like process. However, mature neurons are post-mitotic. Therefore, instead of successfully completing a full round of cell cycle which is necessary for the completion of HR-mediated repair; these cells are arrested at checkpoints. The resulting persistence of repair intermediates induces and promotes the nuclear accumulation of p21 and cyclin B-a trigger for permanent cell cycle exits and irreversible senescence response. Supplementation of bioactive 5-methyl tetrahydrofolate simultaneously at times with ethyl alcohol exposure supports the fidelity of the 1-carbon network and hence the activity of the mismatch repair. This prevents aberrant and irreversible cell cycle re-entry and senescence events of neurons. Together, our findings offer a direct connection between binge-drinking behaviour and its irreversible impact on the brain, which makes it a potential risk factor for dementia.


Assuntos
Senescência Celular , Reparo do DNA , Ciclo Celular , Senescência Celular/genética , Neurônios/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Carbono/metabolismo , Dano ao DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA