RESUMO
11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) plays an important role in regulating the expression of glucocorticoid actions in target tissues. Overexpression of 11ß-HSD1 in mouse adipose tissue causes a metabolic syndrome-like phenotype, leading to hypertension. Although, many 11ß-HSD1 inhibitors have been studied, few have shown a clear ameliorative effect against hypertension. We investigated whether JTT-654, a novel 11ß-HSD1 inhibitor, ameliorated hypertension and elucidated the underlying mechanisms. JTT-654 showed inhibitory effects on angiotensinogen production in cortisone-treated 3T3-L1 adipocytes and in a rat model. JTT-654 improved hypertension not only in cortisone-treated rats and spontaneously hypertensive rats (SHR), but also in SHR/NDmcr-cp rats. In the SHR study, JTT-654 and losartan showed the same degree of antihypertensive efficacy. In addition, JTT-654 ameliorated diabetic nephropathy by suppressing renal angiotensinogen production in SHR/NDmcr-cp rats. These effects of JTT-654 were independent of its insulin-sensitizing effects, and similar effects were not observed for pioglitazone, an insulin sensitizer. Moreover, JTT-654 did not affect normotension or hypothalamus-pituitary-adrenal (HPA) axis function in normal Sprague-Dawley rats. Our results indicate that JTT-654 ameliorates hypertension and diabetic nephropathy by inhibiting 11ß-HSD1 in the adipose tissue, liver, and kidney.
Assuntos
Cortisona , Diabetes Mellitus , Nefropatias Diabéticas , Hipertensão , Camundongos , Ratos , Animais , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Angiotensinogênio , Ratos Sprague-Dawley , Insulina , Rim/metabolismo , Hipertensão/tratamento farmacológicoRESUMO
11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) is the only enzyme that converts inactive glucocorticoids to active forms and plays an important role in the regulation of glucocorticoid action in target tissues. JTT-654 is a selective 11ß-HSD1 inhibitor and we investigated its pharmacological properties in cortisone-treated rats and non-obese type 2 diabetic Goto-Kakizaki (GK) rats because Asians, including Japanese, are more likely to have non-obese type 2 diabetics. Systemic cortisone treatment increased fasting plasma glucose and insulin levels and impaired insulin action on glucose disposal rate and hepatic glucose production assessed by hyperinsulinemic-euglycemic clamp, but all these effects were attenuated by JTT-654 administration. Cortisone treatment also reduced basal and insulin-stimulated glucose oxidation in adipose tissue, increased plasma glucose levels after administration of the pyruvate, the substrate of gluconeogenesis, and increased liver glycogen content. Administration of JTT-654 also inhibited all of these effects. Cortisone treatment decreased basal and insulin-stimulated 2-deoxy-D-[1-3H]-glucose uptake in 3T3-L1 adipocytes and increased the release of free fatty acids and glycerol, a gluconeogenic substrate, from 3T3-L1 adipocytes, and JTT-654 significantly attenuated these effects. In GK rats, JTT-654 treatment significantly reduced fasting plasma glucose and insulin levels, enhanced insulin-stimulated glucose oxidation in adipose tissue, and suppressed hepatic gluconeogenesis as assessed by pyruvate administration. These results demonstrated that glucocorticoid was involved in the pathology of diabetes in GK rats, as in cortisone-treated rats, and that JTT-654 ameliorated the diabetic conditions. Our results suggest that JTT-654 ameliorates insulin resistance and non-obese type 2 diabetes by inhibiting adipose tissue and liver 11ß-HSD1.
Assuntos
Cortisona , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Ratos , Animais , Glucocorticoides/uso terapêutico , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Cortisona/uso terapêutico , Cortisona/farmacologia , Glicemia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/patologia , Insulina , GlucoseRESUMO
11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) has been identified as the primary enzyme responsible for the activation of hepatic cortisone to cortisol in specific peripheral tissues, resulting in the concomitant antagonism of insulin action within these tissues. Dysregulation of 11ß-HSD1, particularly in adipose tissues, has been associated with a variety of ailments including metabolic syndrome and type 2 diabetes mellitus. Therefore, inhibition of 11ß-HSD1 with a small nonsteroidal molecule is therapeutically desirable. Implementation of a scaffold-hopping approach revealed a 3-point pharmacophore for 11ß-HSD1 that was utilized to design a 2-spiroproline derivative as a steroid mimetic scaffold. Reiterative optimization provided valuable insight into the bioactive conformation of our novel scaffold and led to the discovery of several leads, such as compounds 39 and 51. Importantly, deleterious hERG inhibition and pregnane X receptor induction were mitigated by the introduction of a 4-hydroxyl group to the proline ring system.
Assuntos
Diabetes Mellitus Tipo 2 , Síndrome Metabólica , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Hidrocortisona/metabolismoRESUMO
Cortisol is the main stress hormone that plays crucial roles in energy metabolism and immune response in vertebrates. In the present study, the homologues of 11ß-hydroxysteroid dehydrogenase type 1 (designated Cg11ß-HSD1) and 5α-reductase 1 (designated Cg5αR1), the key enzymes related to cortisol metabolism, were identified from Pacific oyster Crassostrea gigas. The Cg11ß-HSD1 harbored a conserved SDR domain, and Cg5αR1 contained a Steroid_dh domain and three transmembrane domains. The mRNA transcripts of Cg11ß-HSD1 and Cg5αR1 were constitutively expressed in all the examined tissues of oysters, with the highest expression level in haemocytes and labial palp, respectively. After acute high temperature stress (28 °C), the mRNA expression level of Cg11ß-HSD1 in hepatopancreas significantly up-regulated at 6 h and 12 h, and that of Cg5αR1 significantly up-regulated at 6 h, compared with the Blank group (11 °C). The concentration of cortisol and glucose, as well as the activities of superoxide dismutase (SOD) and catalase (CAT) in hepatopancreas all significantly up-regulated after acute high temperature stress, while the glycogen concentration in adductor muscle decreased significantly at 6 h and 12 h. After the blockage of Cg11ß-HSD1 with metyrapone, the cortisol concentration and the activities of SOD and CAT significantly decreased after acute high temperature stress, the glucose concentration in hepatopancreas significantly increased at 24 h, and the glycogen concentration in adductor muscle significantly increased at 6 h. These results collectively suggested that cortisol played a crucial role in regulating glucose metabolism and oxidative response in oysters upon acute high temperature stress.
Assuntos
Crassostrea , Animais , Glucose/metabolismo , Glicogênio/metabolismo , Hidrocortisona/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo , TemperaturaRESUMO
PURPOSE OF REVIEW: Idiopathic intracranial hypertension (IIH) is a disorder primarily affecting obese women of childbearing age and, if left untreated, can lead to irreversible vision loss. No consensus exists on the best management strategy for IIH. Weight loss is advocated and few useful medical options exist. There is an unmet need to discover new treatment options for this increasingly prevalent condition. This article reviews the recent advances and research on the treatment of IIH. RECENT FINDINGS: Venous sinus stenting (VSS) is now performed in many experienced centers, and there is growing interest in bariatric surgery as a treatment modality. Newly approved anti-obesity drugs are showing effectiveness in weight loss, and novel targeted disease-modifying IIH therapies are being explored. Further evaluation of these novel therapeutic strategies as well as studies exploring the use of anti-obesity drugs in IIH is needed. While VSS is gaining popularity due to its efficacy and low complication rate, there is insufficient evidence to support any surgical procedure over another. Bariatric surgery is appealing for patients with non-sight-threatening IIH and needs to be further explored.
Assuntos
Fármacos Antiobesidade , Pseudotumor Cerebral , Feminino , Humanos , Obesidade/complicações , Obesidade/cirurgia , Pseudotumor Cerebral/terapia , Stents , Redução de PesoRESUMO
Therapeutic glucocorticoids (GCs) are powerful anti-inflammatory tools in the management of chronic inflammatory diseases such as rheumatoid arthritis (RA). However, their actions on bone in this context are complex. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) is a mediator of the anti-inflammatory actions of therapeutic glucocorticoids (GCs) in vivo. In this study we delineate the role of 11ß-HSD1 in the effects of GC on bone during inflammatory polyarthritis. Its function was assessed in bone biopsies from patients with RA and osteoarthritis, and in primary osteoblasts and osteoclasts. Bone metabolism was assessed in the TNF-tg model of polyarthritis treated with oral GC (corticosterone), in animals with global (TNF-tg11ßKO), mesenchymal (including osteoblast) (TNF-tg11ßflx/tw2cre) and myeloid (including osteoclast) (TNF-tg11ßflx/LysMcre) deletion. Bone parameters were assessed by micro-CT, static histomorphometry and serum metabolism markers. We observed a marked increase in 11ß-HSD1 activity in bone in RA relative to osteoarthritis bone, whilst the pro-inflammatory cytokine TNFα upregulated 11ß-HSD1 within osteoblasts and osteoclasts. In osteoclasts, 11ß-HSD1 mediated the suppression of bone resorption by GCs. Whilst corticosterone prevented the inflammatory loss of trabecular bone in TNF-tg animals, counterparts with global deletion of 11ß-HSD1 were resistant to these protective actions, characterised by increased osteoclastic bone resorption. Targeted deletion of 11ß-HSD1 within osteoclasts and myeloid derived cells partially reproduced the GC resistant phenotype. These data reveal the critical role of 11ß-HSD1 within bone and osteoclasts in mediating the suppression of inflammatory bone loss in response to therapeutic GCs in chronic inflammatory disease.
Assuntos
Artrite Reumatoide , Reabsorção Óssea , Osteoartrite , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Artrite Reumatoide/metabolismo , Reabsorção Óssea/metabolismo , Corticosterona/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Inflamação/patologia , Osteoartrite/metabolismo , Osteoclastos/metabolismoRESUMO
Our previous research revealed that steroid receptor coactivators (Src)-1 and -2 serve a critical cooperative role in production of parturition signals, surfactant protein A and platelet-activating factor, by the developing mouse fetal lung (MFL). To identify the global landscape of genes in MFL affected by Src-1/-2 double-deficiency, we conducted RNA-seq analysis of lungs from 18.5 days post-coitum (dpc) Src-1-/- /-2-/- (dKO) vs. WT fetuses. One of the genes most highly downregulated (~4.8 fold) in Src-1/-2 dKO fetal lungs encodes 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), which catalyzes conversion of inactive 11-dehydrocorticosterone to the glucocorticoid receptor (GR) ligand, corticosterone. Glucocorticoids were reported to upregulate 11ß-HSD1 expression in various cell types via induction of C/EBP transcription factors. We observed that C/ebpα and C/ebpß mRNA and protein were markedly reduced in Src-1/-2 double-deficient (Src-1/-2d/d ) fetal lungs, compared to WT. Moreover, glucocorticoid induction of 11ß-hsd1, C/ebpα and C/ebpß in cultured MFL epithelial cells was prevented by the SRC family inhibitor, SI-2. Cytokines also contribute to the induction of 11ß-HSD1. Expression of IL-1ß and TNFα, which dramatically increased toward term in lungs of WT fetuses, was markedly reduced in Src-1/-2d/d fetal lungs. Our collective findings suggest that impaired lung development and surfactant synthesis in Src-1/-2d/d fetuses are likely caused, in part, by decreased GR and cytokine induction of C/EBP and NF-κB transcription factors. This results in reduced 11ß-HSD1 expression and glucocorticoid signaling within the fetal lung, causing a break in the glucocorticoid-induced positive feedforward loop.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Citocinas/metabolismo , Feto/metabolismo , Glucocorticoides/metabolismo , Pulmão/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Epiteliais/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Ligação Proteica/fisiologia , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The 11ß-hydroxysteroiddehydrogenase type 1(11ß-HSD1), acortisolregenerating enzyme that amplifies tissue glucocorticoidlevels, plays an important role in diabetes, obesity, and glaucoma and is recognized as a potential therapeutic target for various disease conditions. Moreover, a recent study demonstrated that selective 11ß-HSD1 inhibitor can attenuate ischemic brain injury. This prompted us to optimize cyclic sulfamide derivative for aiming to treat ischemic brain injury. Among the synthesized compounds, 6e has an excellent in vitro activivity with an IC50 value of 1â¯nM toward human and mouse 11ß-HSD1 and showed good 11ß-HSD1 inhibition in ex vivo study using brain tissue isolated from mice. Furthermore, in the transient middle cerebral artery occlusion model in mice, 6e treatment significantly attenuated infarct volume and neurological deficit following cerebral ischemia/reperfusion injury. Additionally, binding modes of 6e for human and mouse 11ß-HSD1 were suggested.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Amidas/química , Inibidores Enzimáticos/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Amidas/metabolismo , Animais , Encéfalo/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/patologia , Ciclização , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Humanos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Injeções Intraperitoneais , Camundongos , Relação Estrutura-AtividadeRESUMO
11-Beta hydroxysteroid dehydrogenase type 1 (11ß-HSD1) regulates cortisol levels mainly in adipose, hepatic and brain tissues. There is a relationship between the high activity of this enzyme and the development of obesity and metabolic disorders. The inhibition of 11ß-HSD1 has been shown to attenuate the development of type 2 diabetes mellitus, insulin resistance, metabolic syndrome and other diseases mediated by excessive cortisol production. In this work, fifteen benzothiazole derivatives substituted with electron-withdrawing and electron-donating groups were designed to explore their affinity for 11ß-HSD1 using in silico methods. The results show that (E)-5-((benzo[d]thiazol-2-ylimino)(methylthio)methylamino)-2-hydroxybenzoic acid (C1) has good physicochemical properties and favorable interactions with 11ß-HSD1 through hydrogen bonding and hydrophobic interactions in the catalytic site formed by Y183, S170 and Y177. Furthermore, C1 was synthesized and evaluated in vitro and ex vivo using clobenzorex (CLX) as a reference drug in obese Zucker rats. The in vitro results showed that C1 was a better inhibitor of human 11ß-HSD1 than CLX. The ex vivo assay results demonstrated that C1 was capable of reducing 11ß-HSD1 overexpression in mesenteric adipose tissue. Therefore, C1 was able to decrease the activity and expression of 11ß-HSD1 better than CLX.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Benzotiazóis/química , Benzotiazóis/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Anfetaminas/farmacologia , Animais , Benzotiazóis/farmacologia , Domínio Catalítico/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Ligação de Hidrogênio/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos , Ratos ZuckerRESUMO
Overconsumption of fructose-enriched beverages and everyday stress are involved in the pathogenesis of metabolic disorders through modulation of hepatic glucose metabolism. The aim of the study was to investigate whether interaction of high-fructose diet and chronic stress alter insulin and glucocorticoid signalling thus affecting hepatic glucose homeostasis. High-fructose diet led to hyperinsulinemia, increased glucose transporter 2 level, elevated protein kinase B (Akt) phosphorylation, increased glucokinase mRNA and phospho-to-total glycogen synthase kinase 3 ratio and decreased expression of gluconeogenic genes. Fructose diet also led to stimulated glucocorticoid prereceptor metabolism, but downstream signalling remained unchanged due to increased glucocorticoid clearance. Stress did not affect hepatic insulin and glucocorticoid signalling nor glucose metabolism, while the interaction of the factors was observed only for glucokinase expression. The results suggest that, under conditions of fructose-induced hyperinsulinemia, suppression of gluconeogenesis and glycogen synthase activation contribute to the maintenance of glucose homeostasis. The increased glucocorticoid inactivation may represent an adaptive mechanism to prevent hyperglycaemia.
Assuntos
Açúcares da Dieta/administração & dosagem , Frutose/administração & dosagem , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/metabolismo , Insulina/genética , Insulina/metabolismo , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Estresse FisiológicoRESUMO
We synthesized and evaluated novel 5-[2-(thiophen-2-yl)propan-2-yl]-4H-1,2,4-triazole derivatives as 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) inhibitors. Optimization of the thiophene ring and the substituents on the 1,2,4-triazole ring produced 3,4-dicyclopropyl-5-{2-[3-fluoro-5-(trifluoromethyl)thiophen-2-yl]propan-2-yl}-4H-1,2,4-triazole monohydrochloride (9a), which showed potent and selective inhibitory activity against human 11ß-HSD1. Compound 9a was also metabolically stable against human and mouse liver microsomes. Oral administration of 9a to diabetic ob/ob mice lowered corticosterone levels in adipose tissue, and thereby reduced plasma glucose and insulin levels in a dose-dependent manner.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Triazóis/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Administração Oral , Animais , Diabetes Mellitus Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Masculino , Camundongos , Camundongos Obesos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/administração & dosagem , Triazóis/químicaRESUMO
In this study, rat and human 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) have been cloned by lentiviral transduction and expressed by CHO-K1 cells. The results showed that recombinant plasmids contained R11bhsd1 or H11bhsd1 have been constructed, which is consistent with the gene bank respectively. A clone cell was selected with G418 and cultivated to express 11ß-HSD1. 11ß-HSD1 catalytic activity of rat and human were 99.5 and 98.7%, respectively, determined by scanning radiometer. And the cloned CHO-K1 cells expressed the protein of 11ß-HSD1 in a long-term and stable manner, which makes it suitable for screening 11ß-HSD1 inhibitor. The three-dimensional structure of 11ß-HSD1 was used for studying the interaction between inhibitor and enzyme by the binding poses predicted by AutoDock and LeDock software. The docking results revealed that compound 8 forms 2 hydrogen bonds with the residues of Gly-216 and Ile-218 in 11ß-HSD1, that is to say compound 8 maybe a good 11ß-HSD1 inhibitor. Moreover, C57BL/6 mice with R11bHsd1 overexpression had a higher body weight, glucose, total cholesterol, and triglyceride levels compared to the mice treated with an empty viral vector. The results might provide a beneficial foundation for selecting inhibitors of 11ß-HSD1 or for researching drug candidate mechanisms.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Curcumina/análogos & derivados , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Células CHO , Clonagem Molecular , Cricetinae , Cricetulus , Curcumina/síntese química , Curcumina/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/síntese química , Lentivirus/genética , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Transdução GenéticaRESUMO
Dry eye syndrome (DES) is a disorder of the eye due to tear deficiency or excessive evaporation that causes damage to the eye and is associated with discomfort and dryness. 11ß-Hydroxysteroid dehydrogenase 1 (11ß-HSD1) is an enzyme that converts inactive cortisone to active cortisol. Recently, 11ß-HSD1 has been expressed in human and rodent eyes and has been recognized as a target of glaucoma. In this study, the therapeutic effects and underlying mechanisms of topical carbenoxolone, an 11ß-HSD1 inhibitor, were investigated in benzalkonium chloride (BAC)-treated human conjunctival epithelial cells and a rat DES model. In the in vitro study, carbenoxolone dose-dependently inhibited cell death and 11ß-HSD1 activity in BAC-treated human conjunctival epithelial cells. For the in vivo study, carbenoxolone or a solvent was administered to the BAC-induced DES model twice daily. BAC-treated rat eyes showed significant increases in ocular surface damage, a reduction of tears, decrease corneal thickness, corneal basement membrane destruction, apoptosis in the conjunctival epithelium, and expression of pro-inflammatory cytokines (TNF-α and IL-6) and 11ß-HSD1. These effects of BAC were reversed by topical carbenoxolone treatment. These results demonstrate that carbenoxolone can prevent DES by inhibiting pro-inflammatory cytokine expression and cell death of the corneal and conjunctival epithelium via inhibition of both 11ß-HSD1 activity and expression in the eyes of BAC-treated rats. It is suggested that topical 11ß-HSD1 inhibitors may provide a new therapeutic window in the prevention and/or treatment of DES.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Carbenoxolona/farmacologia , Túnica Conjuntiva/efeitos dos fármacos , Síndromes do Olho Seco/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Soluções Oftálmicas/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Compostos de Benzalcônio/administração & dosagem , Linhagem Celular , Túnica Conjuntiva/citologia , Túnica Conjuntiva/metabolismo , Relação Dose-Resposta a Droga , Síndromes do Olho Seco/induzido quimicamente , Síndromes do Olho Seco/genética , Síndromes do Olho Seco/patologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismoRESUMO
Glaucoma is one of the leading causes of preventable blindness diseases, affecting more than 2 million people in the United States. Recently, 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) inhibitors were found to exert preventive effects against glaucoma. Therefore, we investigated whether carbenoxolone (CBX), an 11ß-HSD1 inhibitor, prevents chemical ischemia-reperfusion-induced cell death in human trabecular meshwork (HTM) cells. The present study demonstrated that CBX inhibited cell death caused by iodoacetic acid (IAA)-induced ischemia-reperfusion, and its effect was associated with the inhibition of 11ß-HSD1 expression and activity. Furthermore, CBX reversed the IAA-induced structural damage on filamentous actin in HTM cells. In IAA-treated cells, the levels of 11ß-HSD1 and the apoptosis-related factors Bax and FASL were increased throughout the reperfusion period, and CBX was able to attenuate the expression of 11ß-HSD1 and the apoptosis-related factors. CBX also effectively suppressed IAA-induced intracellular ROS formation and cytochrome c release, which are involved in the mitochondrial apoptosis pathway. In addition, IAA-induced chemical ischemia-reperfusion stimulated TNF-α expression and NF-κB p65 phosphorylation, and these effects were attenuated by CBX. 11ß-HSD1 RNAi also suppressed IAA-induced cell apoptosis via reduction of oxidative stress and inhibition of the pro-inflammatory pathway. Taken together, the present study demonstrated that the inhibition of 11ß-HSD1 protected the TM against chemical ischemia-reperfusion injury, suggesting that the use of 11ß-HSD1 inhibitors could be a useful strategy for glaucoma therapy.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Carbenoxolona/farmacologia , Traumatismos Oculares/prevenção & controle , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/prevenção & controle , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocromos c/metabolismo , Traumatismos Oculares/induzido quimicamente , Traumatismos Oculares/metabolismo , Humanos , Ácido Iodoacético , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/induzido quimicamente , Traumatismo por Reperfusão/metabolismo , Malha Trabecular/citologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Excess 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) may be implicated in the development of obesity related metabolic disorders. The present study measured the expression level of 11ß-HSD1 in visceral adipose tissues from 23 patients undergoing abdominal operation. Correlation of 11ß-HSD1 expression with BMI, waist-to-hip ratio (WHR), HOMA-IR, and serum lipids was evaluated by spearman correlation analysis. High-fat diet-induced obese (DIO) rats were orally dosed with BVT.2733 for 4 weeks. Weight, plasma insulin, and lipids were detected at the end of the treatment. The effects of 11ß-HSD1 inhibition on the key insulin-signaling cascade and adipocytokines were measured by western blot and ELISA respectively. 11ß-HSD1 was increased in patients with central obesity, the expression level of which was closely related with WHR (r = 0.5851), BMI (r = 0.4952), and HOMA-IR (r = 0.4637). Obesity related insulin resistance in high-fat DIO rats, as reflected by a marked decrease in IRS-1, IRS-2, GLUT4, and PI3K, could be attenuated by 11ß-HSD1 inhibition. Furthermore, the down-regulation of 11ß-HSD1 could correct the disordered profiles of adipocytokines including adiponectin, IL-6, and TNF-α. These findings indicated that 11ß-HSD1 inhibition can give a potential benefit in reducing obesity and lowering insulin resistance by modulating the insulin-signaling pathway and adipocytokine production.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Resistência à Insulina , Insulina/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Animais , Feminino , Humanos , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Masculino , Ratos , Ratos WistarRESUMO
Early life is considered a critical period for determining long-term metabolic health. Postnatal over-nutrition may alter glucocorticoid (GC) metabolism and increase the risk of developing obesity and metabolic disorders in adulthood. Our aim was to assess the effects of the dose and timing of a fish oil diet on obesity and the expression of GC-activated enzyme 11ß-hydroxysteroid dehydrogenase type 1 (HSD1) in postnatal overfed rats. Litter sizes were adjusted to three (small litter (SL)) or ten (normal litter) rats on postnatal day 3 to induce overfeeding or normal feeding. The SL rats were divided into three groups after weaning: high-dose fish oil (HFO), low-dose fish oil (LFO) and standard-diet groups. After 10 weeks, the HFO diet reduced body weight gain (16 %, P0·05). In conclusion, the post-weaning HFO diet could reverse adverse outcomes and decrease tissue GC activity in postnatal overfed rats.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Tecido Adiposo Branco/enzimologia , Suplementos Nutricionais , Modelos Animais de Doenças , Óleos de Peixe/uso terapêutico , Regulação da Expressão Gênica no Desenvolvimento , Síndrome Metabólica/prevenção & controle , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Adiposidade , Animais , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/uso terapêutico , Tamanho Celular , Óleos de Peixe/administração & dosagem , Intolerância à Glucose/etiologia , Intolerância à Glucose/prevenção & controle , Hiperlipidemias/etiologia , Hiperlipidemias/prevenção & controle , Metabolismo dos Lipídeos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Hipernutrição/fisiopatologia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Desmame , Aumento de PesoRESUMO
11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) converts inactive cortisone to the active cortisol. 11ß-HSD1 may be involved in the resolution of inflammation. In the present study, we investigate the anti-inflammatory effects of 2-(3-benzoyl)-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344), a selective 11ß-HSD1 inhibitor, in lipopolysaccharide (LPS)-activated C57BL/6J mice and macrophages. LPS increased 11ß-HSD1 activity and expression in macrophages, which was inhibited by KR-66344. In addition, KR-66344 increased survival rate in LPS treated C57BL/6J mice. HO-1 mRNA expression level was increased by KR-66344, and this effect was reversed by the HO competitive inhibitor, ZnPP, in macrophages. Moreover, ZnPP reversed the suppression of ROS formation and cell death induced by KR-66344. ZnPP also suppressed animal survival rate in LPS plus KR-66344 treated C57BL/6J mice. In the spleen of LPS-treated mice, KR-66344 prevented cell death via suppression of inflammation, followed by inhibition of ROS, iNOS and COX-2 expression. Furthermore, LPS increased NFκB-p65 and MAPK phosphorylation, and these effects were abolished by pretreatment with KR-66344. Taken together, KR-66344 protects against LPS-induced animal death and spleen injury by inhibition of inflammation via induction of HO-1 and inhibition of 11ß-HSD1 activity. Thus, we concluded that the selective 11ß-HSD1 inhibitor may provide a novel strategy in the prevention/treatment of inflammatory disorders in patients.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Óxidos S-Cíclicos/farmacologia , Heme Oxigenase-1/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Tiazinas/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Óxidos S-Cíclicos/antagonistas & inibidores , Ciclo-Oxigenase 2/biossíntese , Interações Medicamentosas , Heme Oxigenase-1/biossíntese , Inflamação/induzido quimicamente , Camundongos , Óxido Nítrico Sintase Tipo II/biossíntese , Fosforilação/efeitos dos fármacos , Protoporfirinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Taxa de Sobrevida , Tiazinas/antagonistas & inibidoresRESUMO
The metabolic syndrome (MetS) presents an increasing prevalence in elderly people. A significant role in MetS is played by the stress response and cortisol. The hypothalamic-pituitary-adrenal (HPA) axis activity is increased by central (loss of hippocampal glucocorticoid receptors) and peripheral (11ß-hydroxysteroid dehydrogenase type 1, 11ß-HSD1, hyperactivity) mechanisms. The HPA hyperactivity has been found in chronic diseases affecting the endocrine (abdominal obesity with MetS, type 2 diabetes), cardiovascular (atherosclerosis, essential hypertension), and nervous systems (dementia, depression), in aging. A novel therapeutic approach (11ß-HSD1 inhibition) is promising in treating the HPA axis hyperactivity in chronic diseases with MetS. A large-scale national clinical trial (AGICO, AGIng, and COrtisol study) has been proposed by our group to evaluate the role of cortisol and MetS in the main pathologies of aging (vascular and degenerative dementia, cardiovascular diseases, type 2 diabetes, abdominal obesity).
Assuntos
Envelhecimento/metabolismo , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Síndrome Metabólica , Sistema Hipófise-Suprarrenal/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Idoso , Doenças Cardiovasculares/metabolismo , Doença Crônica , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Síndrome Metabólica/metabolismo , Síndrome Metabólica/terapia , Obesidade Abdominal/metabolismoRESUMO
BACKGROUND: The involvement of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), which converts inactive glucocorticoids into active glucocorticoids intracellularly, in metabolic diseases and chronic inflammatory diseases has been elucidated. We recently reported that an increase in 11ß-HSD1 expression was associated with chronic periodontitis in humans irrespective of obesity. To further clarify the role of 11ß-HSD1 in chronic periodontitis, the expression of 11ß-HSD1 was investigated in experimental periodontitis model in rats. METHODS: Experimental periodontitis was induced by silk ligature of left maxillary second molars of 7-week-old male Wistar rats, and periodontal tissues were collected at day 3. The expression of 11ß-HSD1, 11ß-HSD2, and TNFα mRNA was examined using real time reverse transcription-polymerase chain reaction. The expression of TNFα was used as an indicator of inflammation. Thus, the rats in which the levels of TNFα mRNA were increased in the ligature-induced periodontitis compared with the control were analysed. RESULTS: The findings demonstrated that the expression of 11ß-HSD1 mRNA was significantly increased in experimental periodontitis compared with the control. The increase in the levels of 11ß-HSD1 mRNA in the ligature-induced periodontitis compared with the control was positively correlated with that of TNFα mRNA. On the other hand, the expression of 11ß-HSD2 mRNA, which inactivates glucocorticoids, was slightly decreased in experimental periodontitis. Therefore, the ratio of 11ß-HSD1 versus 11ß-HSD2 mRNA was significantly higher in experimental periodontitis than in the control. CONCLUSIONS: These results suggest that the increased expression of 11ß-HSD1, which would result in the increased levels of intracellular glucocorticoids, may play a role in the pathophysiology of experimental periodontitis.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Periodontite/metabolismo , Animais , Glucocorticoides , Masculino , Ratos , Ratos WistarRESUMO
Long-term glucocorticoid exposure increases the risk for developing type 2 diabetes. Prereceptor activation of glucocorticoid availability in target tissue by 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) coupled with hexose-6-phosphate dehydrogenase (H6PDH) is an important mediator of the metabolic syndrome. We explored whether the tissue-specific modulation of 11ß-HSD1 and H6PDH in adipose tissue mediates glucocorticoid-induced insulin resistance and lipolysis and analyzed the effects of 11ß-HSD1 inhibition on the key lipid metabolism genes and insulin-signaling cascade. We observed that corticosterone (CORT) treatment increased expression of 11ß-HSD1 and H6PDH and induced lipase HSL and ATGL with suppression of p-Thr(172) AMPK in adipose tissue of C57BL/6J mice. In contrast, CORT induced adipose insulin resistance, as reflected by a marked decrease in IR and IRS-1 gene expression with a reduction in p-Thr(308) Akt/PKB. Furthermore, 11ß-HSD1 shRNA attenuated CORT-induced 11ß-HSD1 and lipase expression and improved insulin sensitivity with a concomitant stimulation of pThr(308) Akt/PKB and p-Thr(172) AMPK within adipose tissue. Addition of CORT to 3T3-L1 adipocytes enhanced 11ß-HSD1 and H6PDH and impaired p-Thr(308) Akt/PKB, leading to lipolysis. Knockdown of 11ß-HSD1 by shRNA attenuated CORT-induced lipolysis and reversed CORT-mediated inhibition of pThr(172) AMPK, which was accompanied by a parallel improvement of insulin signaling response in these cells. These findings suggest that elevated adipose 11ß-HSD1 expression may contribute to glucocorticoid-induced insulin resistance and adipolysis.