RESUMO
All-solid-state potassium batteries emerge as promising alternatives to lithium batteries, leveraging their high natural abundance and cost-effectiveness. Developing potassium solid electrolytes (SEs) with high room-temperature ionic conductivity is critical for realizing efficient potassium batteries. In this study, we present the synthesis of K2.98Sb0.91S3.53Cl0.47, showcasing a room-temperature ionic conductivity of 0.32â mS/cm and a low activation energy of 0.26â eV. This represents an increase of over two orders of magnitude compared to the parent compound K3SbS4, marking the highest reported ionic conductivity for non-oxide potassium SEs. Solid-state 39K magic-angle-spinning nuclear magnetic resonance on K2.98Sb0.91S3.53Cl0.47 reveals an increased population of mobile K+ ions with fast dynamics. Ab initio molecular dynamics (AIMD) simulations further confirm a delocalized K+ density and significantly enhanced K+ diffusion. This work demonstrates diversification of the anion sublattice as an effective approach to enhance ion transport and highlights K2.98Sb0.91S3.53Cl0.47 as a promising SE for all-solid-state potassium batteries.