Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047568

RESUMO

The toxicity of nanoparticles absorbed through contact or inhalation is one of the major concerns for public health. It is mandatory to continually evaluate the toxicity of nanomaterials. In vitro nanotoxicological studies are conventionally limited by the two dimensions. Although 3D bioprinting has been recently adopted for three-dimensional culture in the context of drug release and tissue regeneration, little is known regarding its use for nanotoxicology investigation. Therefore, aiming to simulate the exposure of lung cells to nanoparticles, we developed organoid-based scaffolds for long-term studies in immortalized cell lines. We printed the viscous cell-laden material via a customized 3D bioprinter and subsequently exposed the scaffold to either 40 nm latex-fluorescent or 11-14 nm silver nanoparticles. The number of cells significantly increased on the 14th day in the 3D environment, from 5 × 105 to 1.27 × 106, showing a 91% lipid peroxidation reduction over time and minimal cell death observed throughout 21 days. Administered fluorescent nanoparticles can diffuse throughout the 3D-printed scaffolds while this was not the case for the unprinted ones. A significant increment in cell viability from 3D vs. 2D cultures exposed to silver nanoparticles has been demonstrated. This shows toxicology responses that recapitulate in vivo experiments, such as inhaled silver nanoparticles. The results open a new perspective in 3D protocols for nanotoxicology investigation supporting 3Rs.


Assuntos
Bioimpressão , Nanopartículas Metálicas , Alicerces Teciduais , Bioimpressão/métodos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Organoides , Impressão Tridimensional , Engenharia Tecidual/métodos
2.
Mar Drugs ; 18(6)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575787

RESUMO

3D printing technology has been applied to various fields and its medical applications are expanding. Here, we fabricated implantable 3D bio-printed hydrogel patches containing a nanomedicine as a future tailored cancer treatment. The patches were prepared using a semi-solid extrusion-type 3D bioprinter, a hydrogel-based printer ink, and UV-LED exposure. We focused on the composition of the printer ink and semi-synthesized fish gelatin methacryloyl (F-GelMA), derived from cold fish gelatin, as the main component. The low viscosity of F-GelMA due to its low melting point was remarkably improved by the addition of carboxymethyl cellulose sodium (CMC), a pharmaceutical excipient. PEGylated liposomal doxorubicin (DOX), as a model nanomedicine, was incorporated into the hydrogel and liposome stability after photo-polymerization was evaluated. The addition of CMC inhibited particle size increase. Three types of 3D-designed patches (cylinder, torus, gridlines) were produced using a 3D bioprinter. Drug release was dependent on the shape of the 3D-printed patches and UV-LED exposure time. The current study provides useful information for the preparation of 3D printed nanomedicine-based objects.


Assuntos
Bioimpressão/métodos , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos , Proteínas de Peixes/química , Gelatina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Hidrogéis/química , Luz , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Polimerização/efeitos da radiação , Impressão Tridimensional , Adesivo Transdérmico , Viscosidade
3.
Int J Mol Sci ; 21(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423161

RESUMO

Drop-on-demand (DOD) 3D bioprinting technologies currently hold the greatest promise for generating functional tissues for clinical use and for drug development. However, existing DOD 3D bioprinting technologies have three main limitations: (1) droplet volume inconsistency; (2) the ability to print only bioinks with low cell concentrations and low viscosity; and (3) problems with cell viability when dispensed under high pressure. We report our success developing a novel direct-volumetric DOD (DVDOD) 3D bioprinting technology that overcomes each of these limitations. DVDOD can produce droplets of bioink from < 10 nL in volume using a direct-volumetric mechanism with < ± 5% volumetric percent accuracy in an accurate spatially controlled manner. DVDOD has the capability of dispensing bioinks with high concentrations of cells and/or high viscosity biomaterials in either low- or high-throughput modes. The cells are subjected to a low pressure during the bioprinting process for a very short period of time that does not negatively impact cell viability. We demonstrated the functions of the bioprinter in two distinct manners: (1) by using a high-throughput drug-delivery model; and (2) by bioprinting micro-tissues using a variety of different cell types, including functional micro-tissues of bone, cancer, and induced pluripotent stem cells. Our DVDOD technology demonstrates a promising platform for generating many types of tissues and drug-delivery models.


Assuntos
Materiais Biocompatíveis/farmacologia , Bioimpressão , Impressão Tridimensional , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Matriz Extracelular/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Preparações Farmacêuticas , Engenharia Tecidual/tendências
4.
Anal Chim Acta ; 1304: 342539, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637037

RESUMO

Three-dimensional (3D)-cultured cells have attracted the attention of researchers in tissue engineering- and drug screening-related fields. Among them, 3D cellular fibers have attracted significant attention because they can be stacked to prepare more complex tissues and organs. Cellular fibers are widely fabricated using extrusion 3D bioprinters. For these applications, it is necessary to evaluate cellular activities, such as the oxygen consumption rate (OCR), which is one of the major metabolic activities. We previously reported the use of scanning electrochemical microscopy (SECM) to evaluate the OCRs of cell spheroids. However, the SECM approach has not yet been applied to hydrogel fibers prepared using the bioprinters. To the best of our knowledge, this is the first study to evaluate the OCR of cellular fibers printed by extrusion 3D bioprinters. First, the diffusion theory was discussed to address this issue. Next, diffusion models were simulated to compare realistic models with this theory. Finally, the OCRs of MCF-7 cells in the printed hydrogel fibers were evaluated as a proof of concept. Our proposed approach could potentially be used to evaluate the OCRs of tissue-engineered fibers for organ transplantation and drug screening using in-vitro models.


Assuntos
Hidrogéis , Esferoides Celulares , Humanos , Microscopia Eletroquímica de Varredura , Células Cultivadas , Engenharia Tecidual/métodos , Consumo de Oxigênio , Impressão Tridimensional
5.
Drug Discov Today ; 28(2): 103426, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36332834

RESUMO

This review focuses on recent advances in 3D culture systems that promise more accurate therapeutic models of the glioblastoma multiforme (GBM) tumor microenvironment (TME), such as the unique anatomical, cellular, and molecular features evident in human GBM. The key components of a GBM TME are outlined, including microbiomes, vasculature, extracellular matrix (ECM), infiltrating parenchymal and peripheral immune cells and molecules, and chemical gradients. 3D culture systems are evaluated against 2D culture systems and in vivo animal models. The main 3D culture techniques available are compared, with an emphasis on identifying key gaps in knowledge for the development of suitable platforms to accurately model the intricate components of the GBM TME.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Microambiente Tumoral
6.
Front Bioeng Biotechnol ; 11: 1108396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091338

RESUMO

The field of 3D bioengineering proposes to effectively contribute to the manufacture of artificial multicellular organ/tissues and the understanding of complex cellular mechanisms. In this regard, 3D cell cultures comprise a promising bioengineering possibility for the alternative treatment of organ function loss, potentially improving patient life expectancies. Patients with end-stage disease, for example, could benefit from treatment until organ transplantation or even undergo organ function restoration. Currently, 3D bioprinters can produce tissues such as trachea cartilage or artificial skin. Most low-cost 3D bioprinters are built from fused deposition modeling 3D printer frames modified for the deposition of biologically compatible material, ranging between $13.000,00 and $300.000,00. Furthermore, the cost of consumables should also be considered as they, can range from $3,85 and $100.000,00 per gram, making biomaterials expensive, hindering bioprinting access. In this context, our report describes the first prototype of a significantly low-cost 3D bioprinter built from recycled scrap metal and off-the-shelf electronics. We demonstrate the functionalized process and methodology proof of concept and aim to test it in different biological tissue scaffolds in the future, using affordable materials and open-source methodologies, thus democratizing the state of the art of this technology.

7.
Biomed Pharmacother ; 158: 114131, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36538861

RESUMO

Although the currently available pharmacological assays can cure most pathological disorders, they have limited therapeutic value in relieving certain disorders like myocardial infarct, peripheral vascular disease, amputated limbs, or organ failure (e.g. renal failure). Pilot studies to overcome such problems using regenerative medicine (RM) delivered promising data. Comprehensive investigations of RM in zebrafish or reptilians are necessary for better understanding. However, the precise mechanisms remain poorly understood despite the tremendous amount of data obtained using the zebrafish model investigating the exact mechanisms behind their regenerative capability. Indeed, understanding such mechanisms and their application to humans can save millions of lives from dying due to potentially life-threatening events. Recent studies have launched a revolution in replacing damaged human organs via different approaches in the last few decades. The newly established branch of medicine (known as Regenerative Medicine aims to enhance natural repair mechanisms. This can be done through the application of several advanced broad-spectrum technologies such as organ transplantation, tissue engineering, and application of Scaffolds technology (support vascularization using an extracellular matrix), stem cell therapy, miRNA treatment, development of 3D mini-organs (organoids), and the construction of artificial tissues using nanomedicine and 3D bio-printers. Moreover, in the next few decades, revolutionary approaches in regenerative medicine will be applied based on artificial intelligence and wireless data exchange, soft intelligence biomaterials, nanorobotics, and even living robotics capable of self-repair. The present work presents a comprehensive overview that summarizes the new and future advances in the field of RM.


Assuntos
Medicina Regenerativa , Peixe-Zebra , Animais , Humanos , Inteligência Artificial , Engenharia Tecidual , Materiais Biocompatíveis
8.
Gels ; 9(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36661832

RESUMO

Adipose tissue is an abundant source of extracellular substances that support the tissue repair process. This pilot study was carried out to determine the efficacy of 3D-bioprinted autologous adipose tissue grafts on diabetic foot ulcers (DFUs), with fibrin gel used to stabilise the graft. This was a single-arm pilot study in a tertiary hospital that provides diabetic wound care services. A total of 10 patients with a DFU were enrolled, and the primary endpoint was complete healing within 12 weeks. The secondary endpoints were wound size reduction, time to healing, and adverse events. Seven out of ten patients showed complete healing of their DFU within 12 weeks (at 2, 4, 5, 10, and 12 weeks, respectively). The wound size reduction rate was significantly and progressively reduced over time. According to our data, autologous adipose tissue grafting using a 3D bioprinter, with the addition of fibrin gel that acts as a scaffold, promotes wound healing with high-quality skin reconstruction. Throughout this study period, no adverse events were observed.

9.
Adv Mater Technol ; 7(7): 2101696, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182094

RESUMO

Type 1 Diabetes results from autoimmune response elicited against ß-cell antigens. Nowadays, insulin injections remain the leading therapeutic option. However, injection treatment fails to emulate the highly dynamic insulin release that ß-cells provide. 3D cell-laden microspheres have been proposed during the last years as a major platform for bioengineering insulin-secreting constructs for tissue graft implantation and a model for in vitro drug screening platforms. Current microsphere fabrication technologies have several drawbacks: the need for an oil phase containing surfactants, diameter inconsistency of the microspheres, and high time-consuming processes. These technologies have widely used alginate for its rapid gelation, high processability, and low cost. However, its low biocompatible properties do not provide effective cell attachment. This study proposes a high-throughput methodology using a 3D bioprinter that employs an ECM-like microenvironment for effective cell-laden microsphere production to overcome these limitations. Crosslinking the resulting microspheres with tannic acid prevents collagenase degradation and enhances spherical structural consistency while allowing the diffusion of nutrients and oxygen. The approach allows customization of microsphere diameter with extremely low variability. In conclusion, a novel bio-printing procedure is developed to fabricate large amounts of reproducible microspheres capable of secreting insulin in response to extracellular glucose stimuli.

10.
Tissue Eng Part C Methods ; 28(12): 672-682, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36326206

RESUMO

Recent advances in the field of tissue engineering and regenerative medicine have contributed to the repair of damaged tissues and organs. Renal dysfunctions such as chronic kidney disease (CKD) are considered intractable owing to its cellular heterogeneity. In addition, the absence of definitive treatment options other than dialysis or kidney transplantation in advanced CKD. In this study, we investigated therapeutic effects of a three-dimensional (3D) bio-printed omentum patch as treatment source. Because omentum contains a lot of biological sources for immune regulation and tissue regeneration, it has been used in clinic for >100 years. By using autologous tissue as a bio-ink, the patch could minimize the immune response. The mechanically micronized omentum without any additives became small enough to print, but the original components could be preserved. Then, the 3D printed omentum patch was transplanted under renal subcapsular layer in unilateral ureteral obstruction (UUO) rat model. After 14 days of patch transplantation, the kidneys were analyzed through bulk RNA sequencing and histopathological staining. From the results, decreased tubular injury was observed in the omentum patch group. In addition, the omentum patch significantly altered biological process of gene ontology such as fibrosis-related gene and growth factors. RNA sequencing confirmed the antifibrotic effect by inhibiting fibrosis-inducing mechanisms within PI3K-AKT and JAK-STAT pathways. In conclusion, the omentum patch showed the effect of antitubular injury and antifibrosis on UUO kidneys. In particular, the omentum patch is expected to protect the organ from further degeneration and loss of function by inhibiting the progression of fibrosis. The omentum patch can be a novel therapeutic option for renal dysfunction. Impact statement Many studies and clinical trials are being conducted to develop new treatments for kidney disease. However, there are no newly developed renal replacement therapies. In this study, we developed a new treatment that can ameliorate renal interstitial fibrosis using three-dimensional (3D) bio-printed autologous omentum patch. The 3D printer enables precise patch printing, and the bio-ink made of autologous tissue minimizes the immune response after transplantation. The whole kidneys were analyzed by RNA sequencing and histopathological staining 14 days after transplantation. From the results, the omentum patch had the effect of relieving tubular injury in the injured state. Also, the omentum patch significantly altered biological process of gene ontology. In particular, genes related to fibrosis were observed to be downregulated by the omentum patch. RNA sequencing confirmed that the antifibrotic effect was owing to inducing mechanisms of PI3K-AKT and JAK-STAT pathways. The findings reported in this study represent a significant advancement in the application of 3D bio-printer to damaged organ treatments, especially fibrosis-related diseases.


Assuntos
Insuficiência Renal Crônica , Obstrução Ureteral , Ratos , Animais , Obstrução Ureteral/complicações , Obstrução Ureteral/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Proteínas Proto-Oncogênicas c-akt/uso terapêutico , Omento/metabolismo , Fibrose , Rim , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Modelos Animais de Doenças
11.
Front Chem ; 10: 914126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873038

RESUMO

Violacein (Viol) is a bacterial purple water-insoluble pigment synthesized by Chromobacterium violaceum and other microorganisms that display many beneficial therapeutic properties including anticancer activity. Viol was produced, purified in our laboratory, and encapsulated in a nanostructured lipid carrier (NLC). The NLC is composed of the solid lipid myristyl myristate, an oily lipid mixture composed of capric and caprylic acids, and the surfactant poloxamer P188. Dormant lipase from Rhizomucor miehei was incorporated into the NLC-Viol to develop an active release system. The NLC particle size determined by dynamic light scattering brings around 150 nm particle size and ζ≈ -9.0 mV with or without lipase, but the incorporation of lipase increase the PdI from 0.241 to 0.319 (≈32%). For scaffold development, a 2.5 hydroxypropyl methylcellulose/chitosan ratio was obtained after optimization of a composite for extrusion in a 3D-bioprinter developed and constructed in our laboratory. Final Viol encapsulation efficiency in the printings was over 90%. Kinetic release of the biodye at pH = 7.4 from the mesh containing NLC-lipase showed roughly 20% Viol fast release than without the enzyme. However, both Viol kinetic releases displayed similar profiles at pH = 5.0, where the lipase is inactive. The kinetic release of Viol from the NLC-matrices was modeled and the best correlation was found with the Korsmeyer-Peppas model (R2 = 0.95) with n < 0.5 suggesting a Fickian release of Viol from the matrices. Scanning Electron Microscope (SEM) images of the NLC-meshes showed significant differences before and after Viol's release. Also, the presence of lipase dramatically increased the gaps in the interchain mesh. XRD and Fourier Transform Infrared (FTIR) analyses of the NLC-meshes showed a decrease in the crystalline structure of the composites with the incorporation of the NLC, and the decrease of myristyl myristate in the mesh can be attributed to the lipase activity. TGA profiles of the NLC-meshes showed high thermal stability than the individual components. Cytotoxic studies in A549 and HCT-116 cancer cell lines revealed high anticancer activity of the matrix mediated by mucoadhesive chitosan, plus the biological synergistic activities of violacein and lipase.

12.
Neurochem Int ; 145: 104992, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609598

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder with progressive memory loss resulting in dementia. Amyloid-beta (Aß) peptides play a critical role in the pathogenesis of the disease by promoting inflammation and oxidative stress, leading to neurodegeneration in the brains of AD patients. Numerous in vitro 3D cell culture models are useful mimics for understanding cellular changes that occur during AD under in vivo conditions. The 3D Bioprinter developed at the CELLINK INKREDIBLE was used in this study to directly investigate the influence of 3D conditions on human neural stem cells (hNSCs) exposed to Aß. The development of anti-AD drugs is usually difficult, mainly due to a lack of therapeutic efficacy and enhanced serious side effects. Gold nanoparticles (AuNPs) demonstrate benefits in the treatment of several diseases, including AD, and may provide a novel therapeutic approach for AD patients. However, the neuroprotective mechanisms by which AuNPs exert these beneficial effects in hNSCs treated with Aß are still not well understood. Therefore, we tested the hypothesis that AuNPs protect against Aß-induced inflammation and oxidative stress in hNSCs under 3D conditions. Here, we showed that AuNPs improved the viability of hNSCs exposed to Aß, which was correlated with the reduction in the expression of inflammatory cytokines, such as TNF-α and IL-1ß. In addition, AuNPs rescued the levels of the transcripts of inhibitory kappa B kinase (IKK) in Aß-treated hNSCs. The Aß-mediated increases in mRNA, protein, and nuclear translocation levels of NF-κB (p65), a key transcription factor involved in inflammatory responses, were all significantly abrogated following co-treatment of hNSCs with AuNPs. In addition, treatment with AuNPs significantly restored iNOS and COX-2 levels in Aß-treated hNSCs. Importantly, hNSCs co-treated with AuNPs were significantly protected from Aß-induced oxidative stress, as detected using the DCFH-DA and DHE staining assays. Furthermore, hNSCs co-treated with AuNPs were significantly protected from the Aß-induced reduction in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2 downstream antioxidant target genes (SOD-1, SOD-2, Gpx1, GSH, Catalase, and HO-1). Moreover, AuNPs reduced the aggregates and increased the proteasome activity and the expression of HSP27 and HSP70 genes in Aß-treated hNSCs. Taken together, these findings provide the first evidence extending our understanding of the molecular mechanisms under 3D scaffold conditions by which AuNPs reverse the inflammation and oxidative stress-induced in hNSCs exposed to Aß. These findings may facilitate the development of novel treatments for AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Anti-Inflamatórios/administração & dosagem , Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Células-Tronco Neurais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Bioimpressão/métodos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Células-Tronco Neurais/metabolismo , Estresse Oxidativo/fisiologia
13.
Polymers (Basel) ; 12(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322291

RESUMO

Three-dimensional (3D) bioprinting technology has emerged as a powerful biofabrication platform for tissue engineering because of its ability to engineer living cells and biomaterial-based 3D objects. Over the last few decades, droplet-based, extrusion-based, and laser-assisted bioprinters have been developed to fulfill certain requirements in terms of resolution, cell viability, cell density, etc. Simultaneously, various bio-inks based on natural-synthetic biomaterials have been developed and applied for successful tissue regeneration. To engineer more realistic artificial tissues/organs, mixtures of bio-inks with various recipes have also been developed. Taken together, this review describes the fundamental characteristics of the existing bioprinters and bio-inks that have been currently developed, followed by their advantages and disadvantages. Finally, various tissue engineering applications using 3D bioprinting are briefly introduced.

14.
Front Bioeng Biotechnol ; 8: 580889, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33251196

RESUMO

Advances in 3D bioprinting have allowed the use of stem cells along with biomaterials and growth factors toward novel tissue engineering approaches. However, the cost of these systems along with their consumables is currently extremely high, limiting their applicability. To address this, we converted a 3D printer into an open source 3D bioprinter and produced a customized bioink based on accessible alginate/gelatin precursors, leading to a cost-effective solution. The bioprinter's resolution, including line width, spreading ratio and extrusion uniformity measurements, along with the rheological properties of the bioinks were analyzed, revealing high bioprinting accuracy within the printability window. Following the bioprinting process, cell survival and proliferation were validated on HeLa Kyoto and HEK293T cell lines. In addition, we isolated and 3D bioprinted postnatal neural stem cell progenitors derived from the mouse subventricular zone as well as mesenchymal stem cells derived from mouse bone marrow. Our results suggest that our low-cost 3D bioprinter can support cell proliferation and differentiation of two different types of primary stem cell populations, indicating that it can be used as a reliable tool for developing efficient research models for stem cell research and tissue engineering.

15.
J Biomed Mater Res A ; 105(5): 1324-1332, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28120511

RESUMO

Effective treatments promoting axonal regeneration and functional recovery for spinal cord injury (SCI) are still in the early stages of development. Most approaches have been focused on providing supportive substrates for guiding neurons and overcoming the physical and chemical barriers to healing that arise after SCI. Although collagen has become a promising natural substrate with good compatibility, its low mechanical properties restrict its potential applications. The mechanical properties mainly rely on the composition and pore structure of scaffolds. For the composition of a scaffold, we used heparin sulfate to react with collagen by crosslinking. For the structure, we adopted a three-dimensional (3D) printing technology to fabricate a scaffold with a uniform pore distributions. We observed that the internal structure of the scaffold printed with a 3D bioprinter was regular and porous. We also found that both the compression modulus and strengths of the scaffold were significantly enhanced by the collagen/heparin sulfate composition compared to a collagen scaffold. Meanwhile, the collagen/heparin sulfate scaffold presented good biocompatibility when it was co-cultured with neural stem cells in vitro. We also demonstrated that heparin sulfate modification significantly improved bFGF immobilization and absorption to the collagen by examining the release kinetics of bFGF from scaffolds. Two months after implantating the scaffold into transection lesions in T10 of the spinal cord in rats, the collagen/heparin sulfate group demonstrated significant recovery of locomotor function and according to electrophysiological examinations. Parallel to functional recovery, collagen/heparin sulfate treatment further ameliorated the pathological process and markedly increased the number of neurofilament (NF) positive cells compared to collagen treatment alone. These data suggested that a collagen/heparin sulfate scaffold fabricated by a 3D bioprinter could enhance the mechanical properties of collagen and provide continuous guidance channels for axons, which would improve the neurological function after SCI. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1324-1332, 2017.


Assuntos
Colágeno , Heparina , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal/efeitos dos fármacos , Alicerces Teciduais/química , Animais , Colágeno/química , Colágeno/farmacologia , Feminino , Heparina/química , Heparina/farmacologia , Ratos , Ratos Sprague-Dawley
16.
J Biomed Mater Res A ; 105(6): 1583-1592, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27643636

RESUMO

The development of new three-dimensional (3D) cell culture system that maintains the physiologically relevant signals of hepatocytes is essential in drug discovery and tissue engineering research. Conventional two-dimensional (2D) culture yields cell growth, proliferation, and differentiation. However, gene expression and signaling profiles can be different from in vivo environment. Here, we report the fabrication of a 3D culture system using an artificial scaffold and our custom-made inkjet 3D bioprinter as a new strategy for studying liver-specific functions of hepatocytes. We built a 3D culture platform for hepatocytes-attachment and formation of cell monolayer by interacting the galactose chain of galactosylated alginate gel (GA-gel) with asialoglycoprotein receptor (ASGPR) of hepatocytes. The 3D geometrical arrangement of cells was controlled by using 3D bioprinter, and cell polarity was controlled with the galactosylated hydrogels. The fabricated GA-gel was able to successfully promote adhesion of hepatocytes. To observe liver-specific functions and to mimic hepatic cord, an additional parallel layer of hepatocytes was generated using two gel sheets. These results indicated that GA-gel biomimetic matrices can be used as a 3D culture system that could be effective for the engineering of liver tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1583-1592, 2017.


Assuntos
Alginatos/metabolismo , Receptor de Asialoglicoproteína/metabolismo , Materiais Biocompatíveis/metabolismo , Galactose/metabolismo , Hepatócitos/citologia , Impressão Tridimensional , Engenharia Tecidual/instrumentação , Alginatos/química , Animais , Materiais Biocompatíveis/química , Adesão Celular , Células Cultivadas , Desenho de Equipamento , Galactose/análogos & derivados , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Hepatócitos/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Camundongos Endogâmicos ICR
17.
Tissue Eng Regen Med ; 13(6): 663-676, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30603447

RESUMO

Three-Dimensional (3D) printing technologies have been widely used in the medical sector for the production of medical assistance equipment and surgical guides, particularly 3D bio-printing that combines 3D printing technology with biocompatible materials and cells in field of tissue engineering and regenerative medicine. These additive manufacturing technologies can make patient-made production from medical image data. Thus, the application of 3D bio-printers with biocompatible materials has been increasing. Currently, 3D bio-printing technology is in the early stages of research and development but it has great potential in the fields of tissue and organ regeneration. The present paper discusses the history and types of 3D printers, the classification of 3D bio-printers, and the technology used to manufacture artificial tissues and organs.

18.
Cell Biochem Biophys ; 72(3): 777-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25663505

RESUMO

Recent advances in tissue engineering have adapted the additive manufacturing technology, also known as three-dimensional printing, which is used in several industrial applications, for the fabrication of bioscaffolds and viable tissue and/or organs to overcome the limitations of other in vitro conventional methods. 3D bioprinting technology has gained enormous attention as it enabled 3D printing of a multitude of biocompatible materials, different types of cells and other supporting growth factors into complex functional living tissues in a 3D format. A major advantage of this technology is its ability for simultaneously 3D printing various cell types in defined spatial locations, which makes this technology applicable to regenerative medicine to meet the need for suitable for transplantation suitable organs and tissues. 3D bioprinting is yet to successfully overcome the many challenges related to building 3D structures that closely resemble native organs and tissues, which are complex structures with defined microarchitecture and a variety of cell types in a confined area. An integrated approach with a combination of technologies from the fields of engineering, biomaterials science, cell biology, physics, and medicine is required to address these complexities. Meeting this challenge is being made possible by directing the 3D bioprinting to manufacture biomimetic-shaped 3D structures, using organ/tissue images, obtained from magnetic resonance imaging and computerized tomography, and employing computer-aided design and manufacturing technologies. Applications of 3D bioprinting include the generation of multilayered skin, bone, vascular grafts, heart valves, etc. The current 3D bioprinting technologies need to be improved with respect to the mechanical strength and integrity in the manufactured constructs as the presently used biomaterials are not of optimal viscosity. A better understanding of the tissue/organ microenvironment, which consists of multiple types of cells, is imperative for successful 3D bioprinting.


Assuntos
Impressão Tridimensional/instrumentação , Engenharia Tecidual/métodos , Animais , Humanos , Engenharia Tecidual/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA